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Long ago, when shepherds wanted to see if two herds of sheep were isomorphic, they

would look for an explicit isomorphism. In other words, they would line up both herds

and try to match each sheep in one herd with a sheep in the other. But one day, along

came a shepherd who invented decategorification. She realized one could take each herd

and ’count’ it, setting up an isomorphism between it and some set of ’numbers’, which

were nonsense words like one, two, three... specially designed for this purpose. By

comparing the resulting numbers, she could show that two herds were isomorphic without

explicitly establishing an isomorphism! In short, by decategorifying the category of finite

sets, the set of natural numbers was invented.

According to this parable, decategorification started out as a stroke of mathematical

genius. Only later did it become a matter of dumb habit, which we are now struggling to

overcome by means of categorification.

John Baez, Categorification



Introduction

The process of categorification is difficult to describe. The easiest way to do it is saying

that it consists in replacing elements of set theory with elements of category theory. The

most common way to intend it is as the opposite of the (very natural) process of decat-

egorification, which consists in identifying isomorphic objects in a category as equal. It

follows that categorification is finding a way to see sets as isomorphism classes of some

category, whose structure has to be as consistent as possible with the one we had on sets.

One of the most common examples is considering Set (the category of finite sets) as the

categorification of N, in which two sets are isomorphic if and only if they have the same

cardinality. In this setting, the usual operations +, · become respectively the coproduct

(disjoint union) and the product (cartesian) of the category, so these notions categorify

the operations of N (up to natural isomorphisms). These kind of identifications happen

(and we want them to happen) in any categorification.

Basically, the idea is to translate sets into categories, functions between sets into functors

between categories, equations between functions into natural transformations between

functors, and any extra structure accordingly.

Of course, this is not easy, since there is no foolproof way to find the right category for a

given set. In fact, when we decategorify we lose a lot of information (for instance, while

we still know two objects are isomorphic, we forget the explicit isomorphism), and there

is no “good” way to recover it. Thus, while decategorification is a systematic process,

categorification isn’t - there is a creative part. One may even wonder why do we do that

in the first place, and the answer is that categorifying some structure is, in some sense,

finding the right way to look at it. To quote Urs Schreiber,

One knows one is getting to the heart of the matter when the definitions in terms of

which one conceives the objects under consideration categorify effortlessly.
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This means that, when categorifying, important requirements and properties are usually

highlighted and this often helps extending or using the categorified notion in a very broad

setting. We recommend [MGS08] to further expand this concept.

In this work we examine sl2-categorifications, originally introduced by Chuang and Rouquier

in 2008 [CR08].

To be able to understand what they do, we need some prerequisites. This is addressed

in the first two chapters: chapter one lists some tools that any reader with enough back-

ground should already be familiar with, so it may be skipped if desired, only to come back

to it if needed.

The second chapter focuses on (affine) Hecke algebras and some of their properties, which

have a central role in the structure we choose. In the third chapter we define weak and

proper sl2-categorifications, showing how the given definitions categorify the very impor-

tant property of sl2 which states that for any n there is only one irreducible sl2-module of

dimension n, and getting what we call “minimal categorifications”. Then, we show that

when a category admits an sl2-categorification there is a derived equivalence between the

subcategories which categorify weight spaces.

In chapter four we mention an application of this equivalence, that is used by Chuang

and Rouquier to prove a theorem known as “Broué’s abelian defect group conjecture” in

the case of blocks of symmetric groups. We recall the elementary facts of block theory,

mentioning important results obtained by Rickard, Broué, Rouquier and others. We only

survey the basic facts of this theory because our aim is to mention the part of the proof

of Broué’s conjecture who relies on sl2-categorifications, in order to see how this abstract

construction can be proved useful in a very concrete problem. Thus, we only try to give

the idea of what is going on, often skipping proofs and technicalities (about which we give

appropriate references).

II
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Chapter 1

Tools

1.1 Category theory

Notations

Given a category C, we denote by Ob C the class of its objects, and given two objects A, B,

Hom(A,B) is the class of all arrows in C {f : A→ B}. Composition of arrows is denoted

either by juxtaposition or by the symbol ◦.
Given a functor F : C → D, A ∈ Ob C, F (A) ∈ ObD is given by the object function of F ,

and given an arrow f : A→ B, Ff denotes the arrow Ff : F (A)→ F (B). We often omit

the parenthesis, writing FA for F (A).

Given two functors G,F : C → D, we say that G is a subfunctor of F (we write G ⊆ F )

if for all objects A ∈ Ob C we have G(A) ⊂ F (A) (whenever this makes sense), and for all

morphisms f : A→ B we have that G(f) is the restriction of F (f) to G(A).

Given a natural transformation τ : F → G and an object A, we denote by

τA : F (A)→ G(A)

the arrow that, according to the definition, makes the following diagram commutative.

A

f

��

F (A)
τA //

Ff
��

G(A)

Gf
��

B F (B)
τB // G(B)

1
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We also denote by Hom(F,G) the class of all natural transformations (“morphisms of

functors”) between F and G.

We denote by τ ◦ σ the vertical composition of two natural transformations. This means

that, given σ : F → G, τ : G→ H, we define τ ◦ σ as the natural transformation given by

(τ ◦ σ)A = τA ◦ σA (as functions).

There is another composition of natural transformations, called horizontal composition.

Given F,G : A → B, H,J : B → C functors, and τ : F → G, σ : H → J natural

transformations, we have the following (commutative) diagram

H(F (A))

HτA
��

σF (A) // J(F (A))

JτA
��

H(G(A))
σG(A) // J(G(A))

We define the horizontal composition στ : HF → JG as the transformation given by

taking (στ)A as the diagonal of this square. This is easily natural. Also, it is associative

and has the following properties (see [ML71]):

• It has identities: given a functor F , we denote by 1F the identity natural transfor-

mation. Then 1Iτ = τ and σ1I = σ, where I is the identity functor.

• στ = (1Jτ) ◦ (σ1F ) = (σ1G) ◦ (1Hτ)

The following definition is unrelated to the others, but it will be useful in chapter 2.

Definition 1.1.1. Let Ai be a collection of objects in a category C together with a

collection of morphisms (fij : Aj → Ai)i≤j . The inverse limit of these collections is the

data of an object A together with morphisms πi : A → Ai such that πi = fijπj which

satisfies the following universal property:

For all (B,ψi) that satisfy the properties above, there exists a unique u : B → A that

makes the following diagram commutative

Y

u
��ψj





ψi

��

X

πi   πj~~
Xj

fij
// Xi
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We denote the inverse limit by A = lim
←
Ai.

Abelian categories

Recall the following definitions

Definition 1.1.2.

A ∈ Ob C is an initial object if for any object X ∈ Ob C there exists one and only one

morphism A→ X.

B ∈ Ob C is a terminal object if for any object X ∈ Ob C there exists one and only one

morphism X → B.

Z ∈ Ob C is a zero object if it is both initial and terminal.

Definition 1.1.3.

Given X,Y ∈ Ob C, an object W is called the product of X and Y (denoted by X × Y ) if

there exist arrows πX : W → X, πY : W → Y and it satisfies an universal property: for

any A ∈ Ob C, for any couple of arrows fX : A → X, fY : A → Y there exists a unique

f : A→W such that this diagram is commutative

A
fX

~~
f
��

fY

  
X WπX
oo

πY
// Y

An object M is called the coproduct of X and Y (denoted by X
∐
Y ) if there exist arrows

ıX : X → M , ıY : Y → M and it satisfies an universal property: for any A ∈ Ob C, for

any couple of arrows fX : X → A, fY : Y → A there exists a unique f : M → A such that

this diagram is commutative

A

X

fX
>>

ıX
//M

f

OO

YıY
oo

fY
``

Definition 1.1.4. A category C is additive if:

• For all objects A,B, Hom(A,B) is an additive abelian group, and composition be-

tween arrows is a bilinear map

• C has a zero object
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• For all objects A,B, there exists an object A⊕B := A×B = A
∐
B (such object is

both the product and the coproduct, often called a biproduct or a direct sum. Note

that this only applies to finite (co)products)

To define an abelian category we need to introduce the concepts of kernels and cokernels.

Definition 1.1.5.

Let C be a category with a zero object Z. It follows that for any A,B ∈ Ob C there is a

special arrow 0 : A→ B called the zero arrow, obtained via the composition A→ Z → B.

The kernel of an arrow f : A → B is the data of an object S and an arrow k : S → A

such that

• fk = 0

• For all objects C with an arrow h : C → A such that fh = 0, h factors uniquely

through k (there exists a unique h′ : C → S such that h = kh′)

The cokernel of an arrow f : A → B is the data of an object Q and an arrow q : B → Q

such that

• qf=0

• For all objects P with an arrow h : B → P such that hf = 0, h factors uniquely

through q (there exists a unique h′ : Q→ P such that h = h′q)

Finally, we can now define an abelian category:

Definition 1.1.6. An additive category C is abelian if:

• C has all kernels and cokernels

• All monomorphisms are the kernel of some morphism, and all epimorphisms are the

cokernel of some morphism

A special example of abelian category, which is the one we will work with, is the category

of left (or right) modules over a ring R. In particular, if R is a left (or right) noetherian

ring, the category of left (or right) finitely generated modules over R is abelian.
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Definition 1.1.7.

Given two categories C,D, we define the product category C × D as the category with:

• Ob(C × D) = Ob C ×ObD (meaning pairs of objects)

• HomC×D((C,D), (C ′, D′)) = HomC(C,C
′)×HomD(D,D′)

• (f, g) ◦ (f ′, g′) = (f ◦ f ′, g ◦ g′)

• Id(C,D) = (IdC , IdD)

Remark. With this definition, it is straightforward that if C and D are abelian, their

product is abelian too. In the case of abelian categories sometimes we may write C × D
as C ⊕ D.

Definition 1.1.8.

Let A,B,C ∈ Ob C. Then

• B is a subobject of A if there exists a monomorphism i : B → A

• C is a quotient of A if there exists an epimorphism π : A→ C

Note that by the definition we have (B, i) = ker(A→ coker i), and likewise

(C, π) = coker(kerπ → A), which means that subobjects are kernels of quotients, and

quotients are cokernels of subobjects. We often write A/B meaning coker i.

Definition 1.1.9.

An object A in C is simple if its only subobjects (resp. quotients) are 0 and itself.

Definition 1.1.10.

Given an abelian category C equipped with a tensor product ⊗ and with a unit object S,

a category D has a C-module structure if there is a triple (⊗̃, a, r) where

• ⊗̃ : D × C → D is a functor

• a : (X⊗̃K)⊗̃L→ X⊗̃(K ⊗ L) , r : X⊗̃S → X

(where K,L ∈ Ob C, X ∈ ObD) are natural isomorphisms that make three coherence

diagrams (the four-fold associativity diagram, the unit diagram about the two ways

to define X⊗̃(S ⊗K)→ X⊗̃K and a compatibility diagram X⊗̃(K ⊗ S)→ X⊗̃K)

commutative.
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We work mostly with categories of modules, so in cases where the categorical definition

would be a little difficult to manage we define some tools directly for A-modules, where

A is some ring. We mention the following theorem because it tells us that, in some sense,

we are not making a big mistake

Theorem 1.1.11 (Mitchell’s Embedding). Every smallaabelian category admits a full,

faithful and exact functor to the category A-Modb for some ring A

Complexes and derived categories

Definition 1.1.12. Let C be an abelian category. A cochain complex A• in C is the data

of objects and morphisms

A• : . . .
dn−1

−−−→ Xn dn−→ Xn+1 dn+1

−−−→ . . .

with the additional property that dj ◦ dj−1 = 0 for all j ∈ Z.

We define the cohomology of A• as

Hn(A•) := ker bn (= coker an−1)

where an and bn are defined by the following diagram

coker dn−1

bn

&&
Xn−1 dn−1

//

an−1 &&

Xn

OO

dn // Xn+1

ker dn

OO

This can be proved equivalent to the “usual” definition Hn(A•) = ker dn/ Im dn−1.

Definition 1.1.13. A complex C• is called acyclic if Hn(C•) = 0 for all n.

Definition 1.1.14.

A morphism φ• : A• → B• of complexes is a collection of morphisms φn : An → Bn such

awe haven’t mentioned the meaning of “small” so far, and we don’t really need to, since all categories
we work with are small. The interested reader can find it in [ML71]

bThe category of all A-modules, not just the ones that are finitely generated
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that

. . .
dn−2
// An−1

φn−1
��

dn−1
// An

φn
��

dn // An+1

φn+1
��

dn+1
// . . .

. . .
dn−2
// Bn−1 dn−1

// Bn dn // Bn+1 d
n+1

// . . .

is a commutative diagram.

Definition 1.1.15.

Kom(C) is the category that has the complexes in C as objects and the morphisms of

complexes as arrows.

Kom+(C) is the full subcategory c of complexes A• such that there exists k with An = 0

for all n ≤ k.

Kom−(C) is the full subcategory of complexes A• such that there exists k with An = 0 for

all n ≥ k.

Komb(C) is the full subcategory with Ob(Komb(C)) = Ob(Kom+(C)) ∩Ob(Kom−(C)).

In the following we consider Kom(C), but any definition remains valid for any of the other

three.

The complex category contains the original one, in this sense: we can define the inclusion

functor as the functor I : C → Kom(C) in which for all objects A ∈ C, I(A) = I(A)• with

I(A)0 = A, I(A)n = 0 if n 6= 0.

Definition 1.1.16. Let

0→ F r
dr−→ F r+1 → · · · → F s → 0

be a bounded complex of functors, where F i : C → C, C is an abelian category and dr is a

natural transformation for any r

Given any complex in C
M• : . . .M j δj−→M j+1 → . . .

cmeaning that if it contains A• and B•, it contains all arrows in HomC(A
•, B•)
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we can consider this (commutative) diagram

. . . . . .

. . . // F i+1(M j)
F i+1δj //

OO

F i+1(M j+1) //

OO

. . .

. . . // F i(M j)
F iδj //

diMj

OO

F i(M j+1)

diMj+1

OO

// . . .

. . .

OO

. . .

OO

This allows us to define the total complex

F •(M•)k =
⊕
i+j=k

F i(M j)

where the differential d is given as

dk = (dkij) , dkij : F i(Mj)

(
diMj

,(−1)iF i(δj)
)

−−−−−−−−−−−−→ F i+1(Mj)⊕ F i(M j+1)

and, if for any f• : M• → N• morphism of complexes we define

F •(f•) : F •(M•)→ F •(N•)

F •(f•)k|F i(Mj) := F i(f j)

then we have that any endofunctor F induces an endofunctor F • in Kom(C).

Definition 1.1.17.

Given an integer k, the shift operator –[k] of Kom(C) (that gives an auto-equivalence of

this category) sends the complex A• to the complex A[k]• defined as

A[k]n = An+k , dA[k]• = (−1)kdA•

and sends the morphism of complexes φ• to the morphism φ[k]• defined as

φ[k]• : A[k]• → B[k]• , φ[k]n = φn+k
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Note that any morphism of complexes φ• induces a collection of maps

Hn(φ) : Hn(X•)→ Hn(Y •)

in the obvious way. In abelian categories we have the following stronger result (see [GM02]

for the proof)

Lemma 1.1.18. If C is an abelian category and

0→ A• → B• → C•

is a short exact sequence in Kom(C), then there is an induced long exact sequence

· · · → Hn(A•)→ Hn(B•)→ Hn(C•)→ Hn+1(A•)→ . . .

Definition 1.1.19.

The mapping cone (or just cone) of a morphism of complexes φ• : A• → B• is a complex

C(φ)• defined as:

• C(φ)n = A[1]n ⊕Bn

• dC(φ)•(A
n+1, Bn) = (−dA(An+1), φ(An+1) + dB(Bn))

Definition 1.1.20.

A morphism of complexes φ• : A• → B• is a quasi-isomorphism if the map Hn(φ) is an

isomorphism for all n.

Proposition 1.1.21. A morphism of complexes φ• : A• → B• is a quasi-isomorphism if

and only if the cone is acyclic, meaning that Hn(C(φ)•) = 0 for all n

Proof. It is enough to apply lemma 1.1.18 to the short exact sequence

0→ A[1]•
i•−→ C(φ)•

π•−→ B• → 0

where i• and π• are the canonical inclusion and projection in the direct sum.

In fact, we get

0 · · · → Hn−1(B•)→ Hn(A[1]•)→ Hn(C(φ)•)→ Hn(B•)→ Hn+1(A[1]•)→ . . .
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Using that Hn(A[1]•) = Hn−1(A•) we get the thesis.

The following category can be seen as an intermediate step in the construction of the

derived category. We aren’t using this approach to define it, but some equivalences in

the derived category actually transfer to the homotopy one, so it is useful to recall its

definition.

Definition 1.1.22. A morphism of complexes φ• : A• → B• is null-homotopic if there

exists a family of morphisms hn : An → Bn−1 such that

fn = dBh
n + hn+1dA

for all n ∈ Z.

The homotopy category K(C) has the same objects as Kom(C), and as the morphisms the

ones of Kom(C) modulo the null-homotopic ones.

We now proceed to define the derived category of an abelian category C. While we need

this notion to state one of the final results of this work, it is beyond our purpose to examine

it throughly. For a detailed and complete construction of the derived category, see [Kel98]

or [GM94].

Definition 1.1.23.

Given an abelian category C , a category is the derived category D(C) of C if

• There is a functor Q : Kom(C)→ D(C) such that for any quasi-isomorphism φ, Q(φ)

is an isomorphism

• For all other category H with a functor F : Kom(C) → H with the above property

there exists a unique functor G : D(C)→ H such that

Kom(C) F //

Q

��

H

D(C)
G

;;

is a commutative diagram.

The uniqueness is immediate from the universal property. For a proof of the existence of

the derived category, see [GM94].
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Note that, as before, both K(C) and D(C) contain C as a full subcategory.

There is a canonical functor K(C) → D(C) that comes from the fact that D(C) is the

localization of the homotopy category to the class of quasi-isomorphisms.

1.2 Adjoint functors

Definition 1.2.1. Let C,D be two categories, and G : C → D, G∨ : D → C two functors.

G and G∨ are adjoint functors if there exists two morphisms of functors

η : IdC → G∨G (the unit)

ε : GG∨ → IdD (the counit)

such that, denoting 1G : G→ G the identity morphism

• ε1G ◦ 1Gη = 1G

• 1G∨ε ◦ η1G∨ = 1G∨

Note that G and G∨ have two different roles: a left adjoint is generally distinguished from

a right adjoint.

Example. Let C = Set be the category of sets, D = Grp be the category of groups. We

define G : Set→ Grp as the functor that sends a set {xi}i∈I to the free group generated

by its elements, and G∨ : Grp → Set as the forgetful functor which views a group G as

the set of its elements.

Note that, if S is a set, G∨G(S) is much bigger and definitely not the same object. Yet,

as we’re about to see, G and G∨ are adjoint functors. Define

εX : G(G∨X)→ X

as the homomorphism of groups obtained by extending the map that satisfies xi 7→ xi for

all i ∈ I, and

ηS : S → G∨GS

as the natural inclusion of S in the set of “words” made of its elements. This gives an
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adjunction, in fact we have, for S ∈ Ob(Set)

GS
(1Gη)S // GG∨GS

(ε1G)S // GS

free group

generated by S

� // free group generated by

the free group GS

� //

generators of

the free group

generated by GS

oo ∼ // GS

because the horizontal compositions of morphisms are the following

GS
(1G)GS //

(1Gη)S

$$
GS

GηS // GG∨GS

GG∨GS
εGS //

(ε1G)S

;;GS
(1G)S // GS

The other identity 1G∨ε◦η1G∨ = 1G∨ can be verified in a similar way, proving that G and

G∨ are, in fact, adjoint functors.

Remark. The data of a unit and a counit gives us a very important map of Hom-sets, which

highlights a particular property of adjoint functors that will be very useful in the following

chapters. It can be shown that giving the data of such a map is actually equivalent to

giving the data of an adjunction.

Let C,D be two categories, and G : C → D, G∨ : D → C two adjoint functors. We have a

canonical isomorphism functorial in A ∈ Ob C, B ∈ ObD

γG(A,B) : Hom(GA,B)
∼−→ Hom(A,G∨B)

f 7→ G∨f ◦ ηX

εB ◦Gf ′ ←[ f ′

Remark. If we consider G1 : C1 → C2, G2 : C2 → C3, and G∨1 , G
∨
2 their adjoints, then
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(G2G1, G
∨
1G
∨
2 ) is an adjoint pair, defining

η : IdC1
η1−→ G∨1G1

1G∨1
η11G1

−−−−−−−−→ G∨1G
∨
2G2G1

ε : G2G1G
∨
1G
∨
2

1G2
ε11G∨2−−−−−−−→ G2G

∨
2

ε2−→ IdC3

Remark. If (G,G∨) is a pair of adjoint endofunctors, then using the morphism above

Hom(G2(−),−) ' Hom(G(−), G∨(−)) ' Hom(−, (G∨)2(−))

which means that (G2, (G∨)2) is a pair of adjoint endofunctors too. The unit and the

co-unit are defined in the obvious way

η2 = 1G∨η1G ◦ η , ε2 = ε ◦ 1Gε1G∨

Obviously this means that, for any n ∈ N, (Gn, (G∨)n) is a pair of adjoint endofunctors.

If we have two functors G,H : C → D and φ ∈ Hom(G,H), given G∨, H∨ : D → C (their

adjoints), we can define φ∨ ∈ Hom(H∨, G∨) as the composition

H∨
ηG1H∨−−−−→ G∨GH∨

1G∨φ1H∨−−−−−−→ G∨HH∨
1G∨εH−−−−→ G∨ (1.1)

This is the only map that makes the following diagram commutative for any A ∈ C, B ∈ D

Hom(HA,B)
Hom(φ(A),B) //

γH(A,B) ∼
��

Hom(GA,B)

γG(A,B)∼
��

Hom(A,H∨B)
Hom(A,φ∨(B))

// Hom(A,G∨B)

Having defined adjunction between functors, we now prove three lemmas that will be

useful in the following chapters.

Lemma 1.2.2. Let C be an abelian category, and C- proj the category of projective objects

of C d. Let E,F be a pair of adjoint endofunctors that preserve exact sequences. Then

the restriction of E and F gives a pair of adjoint endofunctors on C- proj.

dRecall that an object A is projective if the functor: Hom(P,−) : C →Ab preserves exact sequences.
See [Jac12] for more details about projective objects and their properties
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Proof. We need to prove that, for any projective object P , E(P ) is projective. Recall

that a characterization of projectivity is that for any epimorphism φ : M → N and any

morphism ψ : E(P )→ N there exists ρ : E(P )→M such that ψ = φ ◦ ρ.

Using the isomorphism between Hom-sets seen in the remark above, we get another dia-

gram

E(P )
ρ

||
ψ

��

P

λ

zz
γE(ψ)
��

M
φ // N F (M)

Fφ // F (N)

Since the exactness of F implies that F (N) is still an epimorphism, then the fact that

P ∈ C- proj implies the existence of λ : P → F (M) that makes the second diagram

commutative. Define ρ := γ−1
E (λ). We need to show that ψ = φ ◦ ρ.

This is immediate by looking at this diagram

Hom(E(P ),M)

γE
��

φ◦− // Hom(E(P ), N)

γE
��

Hom(P, F (M))
Fφ◦−

// Hom(P, F (N))

since, given ρ in the upper left Hom-set, we get

γE(φ ◦ ρ) = Fφ ◦ γE(ρ) = Fφ ◦ λ = γE(ψ)

which, since γE is an isomorphism, implies the thesis.

Lemma 1.2.3. Let C be abelian. Given a complex of endofunctors with Ei in degree i

0→ Er
dr−→ Er+1 → · · · → Es → 0

such that every Ei has a (right) adjoint functor F i, we get another complex where F i is

in degree −i
0→ F s

(ds−1)∨−−−−−→ · · · → F r → 0

Doing the construction we described in 1.1.16, we get E•, F • endofunctors of Kom(C).
These are actually adjoint functors, with the appropriate definitions of ε and η.
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Proof. (sketch)

For any A,B ∈ Ob C, it is enough to define

γE(A,B) : HomKom(C)(EA,B)
∼−→ HomKom(C)(A,FB)

as the restriction of

∑
i

γEi(A,B) :
⊕
i

HomC(E
iA,B)

∼−→
⊕
i

HomC(A,F
iB)

1.3 Grothendieck group

The Grothendieck group is a very useful construction that gives an abelian group from a

category that satisfies certain conditions. Depending on the setting, there are many defi-

nitions that differ slightly. We are only interested in abelian (therefore exact) categories,

so we state the definition we’ll be using in this work.

Definition 1.3.1. The Grothendieck group K0(C) of an abelian category C is the free

abelian group generated by isomorphism classes of Ob(C), with relations

[A]− [B]− [C] = 0

for all triples in Ob(C) such that 0→ B → A→ C → 0 is a short exact sequence.

Example. If we consider the abelian category V of finite-dimensional vector spaces over

C, two objects are isomorphic if and only if they have the same dimension. So K0(V) is

generated by [Cn], one for each natural number n. Moreover, since

0→ Cm → Cm+n → Cn → 0

is always a short exact sequence, we have that [Cn] = n[C]. So there is just one generator,

and K0(V) ' Z .

Proposition 1.3.2. K0(C) satisfies the following universal property:

• There exists a map φ : Ob(C)→ K0(C) that satisfies φ(A) = φ(B) + φ(C) if

0→ B → A→ C → 0 is a short exact sequence.
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• For all other pairs (G,ψ), with G an abelian group and ψ : Ob(C)→ G a map with

the above property, there exists a unique abelian group homomorphism f : K0(C)→ G

such that ψ = f ◦ φ.

Proof. Just define

φ : Ob(C) −→ K0(C)

A 7−→ [A]

and

f : K0(C) −→ G

[A] 7−→ ψ(A)

ψ being an additive map ensures the map above is well-defined (meaning it doesn’t depend

on the choice of the representative in the equivalence class). In fact, if A ' A′ and

0 → B → A → C → 0 is exact, then there is an exact sequence 0 → B → A′ → C → 0

obtained via composition with the isomorphism in the obvious way.

Note that, in particular, this means that K0(C ⊕ D) = K0(C) ⊕ K0(D) for any abelian

categories C, D.

There is a very useful description of the Grothendieck group in the particular case of finite

type categories. Before stating this result, let us recall briefly the definition and the main

properties of such categories.

Definition 1.3.3.

Let C be an abelian category. C is of finite type if it is noetherian and artinian, meaning

that any ascending chain E0 ⊂ E1 ⊂ · · · ⊂ Ei ⊂ Ei+1 ⊂ . . . and any descending chain

E0 ⊃ E1 ⊃ · · · ⊃ Ei ⊃ Ei+1 ⊃ . . . stabilizes.

A classic result on finite type categories is a generalization of the Jordan-Hölder decom-

position theorem in finite group theory. A proof can be found in [LM13].

Theorem 1.3.4 (Jordan-Hölder).

If C is a category of finite type, and A ∈ Ob C, then
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• There exists a finite composition series for A, i.e. a chain

0 = A0 ⊆ A1 ⊆ A2 ⊆ · · · ⊆ An = A

such that Ai+1/Ai is a simple object for all i = 0, . . . , n− 1.

• If

0 = B0 ⊆ B1 ⊆ B2 ⊆ · · · ⊆ Bm = A

is another composition series, then m = n and there is a permutation σ ∈ Sn such

that Ai+1/Ai ' Bσ(i)+1/Bσ(i) for all i = 0, . . . , n− 1 (meaning that the quotients are

the same for all composition series).

Theorem 1.3.5.

Let C be a finite type category. Then K0(C) is a free abelian group generated by

S = {[S], S ∈ Ob C simple}.

Proof. For any object A, define l(A) to be the length of its composition series. We prove

by induction on l(A) that [A] can be written as a linear combination of classes of simple

objects.

If l(A) = 1 A is a simple object, so there is nothing to prove.

Now if l(A) = n, note that A1 in its composition series is a simple object. So, in particular

0→ A1 → A→ A/A1 → 0

is a short exact sequence, which means that l(A/A1) = l(A)−1. Also, [A] = [A1]+ [A/A1]

in the Grothendieck group.

Because of the induction hypothesis, we know that [A/A1] can be written as a linear

combination of simple objects, so we proved what we wanted.

It remains to prove that the classes of simple objects are linearly independent. Let ZS be

the free abelian group generated by the elements of S, and

φ : ZS −→ K0(C)
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the natural morphism. We define (and then extend linearly) the homomorphism

ψ : K0(C) −→ ZS

[A] 7−→
l(A)−1∑
i=0

[Ai+1/Ai]

Since ψ ◦ φ = IdZS , we have found a left inverse of φ, which means that φ is injective,

therefore the elements of S are linearly independent.

1.4 Representations of sl2

Definition 1.4.1. sl2(K) is the Lie algebra of 2 × 2 matrices over K with trace zero. A

basis is given by

e =

(
0 1

0 0

)
, f =

(
0 0

1 0

)
, h =

(
1 0

0 −1

)

Note that [e, f ] = h, [h, e] = 2e, [h, f ] = −2f . We also name two special elements

s = exp(−f) exp(e) exp(−f) =

(
0 1

−1 0

)
, s−1 = exp(f) exp(−e) exp(f) =

(
0 −1

1 0

)

To make some statements more readable, sometimes we put e+ = e, e− = f .

Recall the classic result on finite-dimensional sl2 representations when K has characteristic

0. The proof can be found in [Hum72].

Theorem 1.4.2. Let Vn = K[x, y]n (homogeneous polynomials of degree n), and define

φ : sl2 −→ gl(Vn)

e 7→
{
p→ x · d

dy
p

}
f 7→

{
p→ y · d

dx
p

}
h 7→

{
p→

(
x · d

dx
− y · d

dy

)
p

}
This is an irreducible sl2 representation on Kn+1. Moreover, there are no other irreducible
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finite-dimensional representations (i.e. simple modules) and any finite-dimensional sl2

representation can be decomposed as a direct sum of Vi1 ⊕ · · · ⊕ Vik .

Remark. Note that on Vn with the standard basis for homogeneous polynomials the action

of the elements is given by the following matrices

φ(e) =



0 1 0 . . . 0 0

0 0 2 . . . 0 0
...

...
. . .

. . .
...

...

0 0 0
. . . n− 1 0

0 0 0 . . . 0 n

0 0 0 . . . 0 0


, φ(f) =



0 0 . . . 0 0 0

n 0 . . . 0 0 0

0 n− 1
. . . 0 0 0

...
...

. . .
. . .

...
...

0 0 . . . 2 0 0

0 0 . . . 0 1 0



φ(h) =



n 0 0 . . . 0 0

0 n− 2 0 . . . 0 0
...

...
. . .

...
...

...

0 0 0
. . . 0 0

0 0 0 . . . −n+ 2 0

0 0 0 . . . 0 −n


Let V be a locally finite module of sl2(Q) (i.e. a direct sum of finite dimensional modules).

For any λ ∈ Z, we denote its weight space by Vλ. For any v ∈ V , we put

h±(v) = max
{
i | ei±v 6= 0

}
, d(v) = h+(v) + h−(v) + 1

We have the following lemma

Lemma 1.4.3. If V is a direct sum of simple modules of dimension d, then for all v ∈ Vλ

• d(v) = d = 1 + 2h±(v)± λ

• e(j)
∓ e

(j)
± v =

(
h∓(v)+j

j

)(
h±(v)
j

)
v for all 0 ≤ j ≤ h±(v)

Proof. Up to looking at v in its direct sum decomposition, we can suppose v is in one of

the Vn modules, where n = d − 1. Now, the action of e+ and e− on the weight spaces
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decomposition can be summed up by the following diagram

0 n
e−
22

e+
vv

n− 2
e−

44

e+
uu

. . .
e+rr

e−
44 . . .

e+
vv

e−
11 −n+ 2

e−
33

e+
uu −n

e+qq

e−

66 0

So if v ∈ Vλ then h+(v) = n−λ
2 , and h−(v) = n+λ

2 . So

h±(v) = h∓(v)∓ λ

and the first formula is proven. We omit the proof of the second formula, since it can be

obtained with similar reasoning on the diagram above.

The following lemma will be very important in chapter 3.

Lemma 1.4.4. Let V be a locally finite sl2(Q)-module. Let B be a basis of V consisting

of weight vectors such that
⊕
b∈B

Q≥0b is stable under the actions of e±.

Let L± = {b ∈ B | e∓b = 0} and for any r ≥ 0 define

V ≤r =
⊕
d(b)≤r

Qb

Then

1) V ≤r is isomorphic to a sum of modules of dimension ≤ r

2) For any b ∈ B, e
h±(b)
± ∈ Q≥0L∓

3) For any b ∈ L±, there is αb ∈ Q≥0 such that α−1
b e

h±(b)
± b ∈ L∓, and the map

b→ α−1
b e

h±(b)
± b

is a bijection L±
∼−→ L∓.

Moreover, the following assertions are equivalent

i) V ≤r is the sum of all the simple submodules of V of dimension ≤ r.

ii)
{
ei±b
}
b∈L±, 0≤i≤h±(b)

is a basis of V .
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Proof.

1) We just need to prove that V ≤r is a submodule. Note that V ≤r is generated by a

subset of B. Let b ∈ B with d(b) ≤ r. We want to prove that d(eb) ≤ r, d(fb) ≤ r.
Since B is stable under the action of e, we can write

eb =
∑
c∈B

ucc

where uc ≥ 0. In particular, we have

0 = eh+(b)eb =
∑
c∈B

uc(e
h+(b)c)

This means that whenever uc 6= 0, eh+(b)c = 0, so eb is a linear combination of vectors

c with h+(c) ≤ h+(b). For the previous lemma, this means that d(eb) ≤ d(b) ≤ r,

which proves that V ≤r is stable under the action of e.

We can prove with the same argument that fb ∈ V ≤r too.

2) Put

e
h±(b)
± b =

∑
c∈B

v±c c

for some v±c ∈ Q≥0. As before, we have that

0 = e
h±(b)+1
± b =

∑
c∈B

v±c e±c

so if v±c 6= 0 then e±c = 0, which means that e
h±(b)
± b ∈ Q≥0L∓.

3) For b ∈ L±, we put

e
h±(b)
± b =

∑
c∈B

wcc

We observe that the elements e
h±(b)
∓ e

h±(b)
± b = β±b for some β± > 0. This is true

because of the identity

e+e−b = e−e+b+ hb

In fact, depending on which sign we chose, either e+b = 0 or e−b = 0, so the action
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on b is diagonal. In particular,

∑
c∈B

wce
h±(b)
∓ c = β±b

so for any c such that wc 6= 0, there exists a βc ≥ 0 with e
h±(b)
∓ c = βcb.

Moreover, since this identity implies h±(c) = h∓(b), the element

e
h∓(c)
± e

h∓(c)
∓ c = e

h±(b)
± e

h±(b)
∓ c = βce

h±(b)
± b

is a nonzero multiple of c. So there is a unique c with wc 6= 0, and putting αb = β−1
c

we get the isomorphism we wanted.

(i)⇒(ii) : By induction on r. If r = 0, it is obvious that the set is a basis. Now, assume (ii)

holds for r = d, meaning that
{
ei±b
}
b∈L±,0≤i≤h+(b)<d

is a basis of V ≤d. Defining

π : V ≤d+1 � V ≤d+1/V ≤d

we have that π ({b ∈ B | d(b) = d+ 1}) is a basis of the quotient.

The quotient, though, is itself a multiple of the simple module of dimension d+1, and

{b ∈ L± | d(b) = d+ 1} maps to a basis of the lowest weight space of the quotient if

± = +, highest if ± = −.

It follows that
{
ei±b
}
b∈L±, 0≤i≤d=h±(b)

maps to a basis of the quotient. By induction,

then,
{
ei±b
}
b∈L±, 0≤i≤h±(b)<d+1

is a basis of V ≤d+1.

(ii)⇒(i) : Let v be a weight vector with weight λ. Then

v =
∑

b∈L±,2i=λ±h±(b)

ub,ie
i
±b

for some ub,i ∈ Q. We choose s maximal with respect to the property that there

exists b ∈ L± with h±(b) = s+ i and ub,i 6= 0. Then

es±v =
∑

b∈L±,i=h±(b)−s

ub,ie
h±(b)
± b

The linear independence of
{
e
h±(b)
±

}
for b ∈ L± implies that esv 6= 0, so s ≤ h+(v).

From d(v) < r we get h±(b) < r for all b with ub,i 6= 0, which implies (i).
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1.5 Socle and Head

We begin by recalling the extremely useful result about simple modules known as Schur’s

lemma

Lemma 1.5.1. Let M and N be two simple modules over a ring R. Then any homomor-

phism f : M → N of R-modules is either invertible or zero.

In this section, A will be an associative K-algebra with unit. Recall the following definition

Definition 1.5.2. The Jacobson radical of A, denoted by Rad(A), is the set of elements

a ∈ A such that for any simple A-module S, aS = 0 (note that this is an ideal).

Recall that if A is finite dimensional, then Rad(A) is the largest nilpotent ideal in A, or

equivalently the intersection of all maximal submodules of A (viewing A as an A-module

as usual), or as the smallest submodule R of A such that A/R is semisimple (this is known

as Jacobson’s theorem). One of the most useful results is this lemma

Lemma 1.5.3 (Nakayama).

If M is a finite dimensional A-module such that Rad(A)M = M , then M = 0.

We define the Jacobson radical of a finite dimensional module M as Rad(M) = Rad(A)M .

This is still the intersection of all maximal submodules of M , or the smallest submodule

R such that M/R is semisimple. We define

Definition 1.5.4. The head of M , denoted by hd(M), is the module M/Rad(M), i.e.

the largest semisimple quotient of M .

The socle of M , denoted by soc(M), is the largest semisimple submodule of M , i.e. the

largest submodule generated by simple modules.

We can define a descending series of modules, called the radical series of M

M ⊃ Rad(M) ⊃ Rad(Rad(M)) ⊃ · · · ⊃ Radi(M) ⊃ Radi+1(M) = 0

Note that the nilpotency of Rad(A) implies that this series is finite. Also, by the previous

characterization, note that any successive quotient is a semisimple module. In a similar

way, we can define the socle series of M as the ascending series of modules

0 ⊂ soc(M) ⊂ soc2(M) ⊂ · · · ⊂ socj(M) ⊂ socj+1(M) = 0
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where we define sock(M) as the submodule such that

sock(M)/ sock−1(M) = soc
(
M/ sock−1(M)

)
For any k ∈ N, we have sock(M) =

{
m ∈M | Rad(A)kM = 0

}
(see [AB95] ). In particu-

lar, this implies that the two series have the same length.

In the case of modules with a simple socle, there is a very useful lemma that relates the

homomorphisms of said module with any other and the multiplicity of the socle in the

composition series of the codomain.

Lemma 1.5.5. Let M be a A-module with soc(M) = S simple, and let N be any A-

module. Then, if we denote by m the multiplicity of S as a composition factor of N , we

have that dim (HomA(N,M)) ≤ m.

Proof.

We prove this by induction on the length of any composition series of N .

First, suppose that N is a simple module. Then Schur’s lemma implies that

dim HomA(N,M) =

1 if N ' soc(M)

0 otherwise

since for any nonzero homomorphism φ, φ(N) would be a simple submodule of M (there-

fore contained into the socle, which is simple).

Now, for any N , consider the short exact sequence

0→ Q→ N → N/Q→ 0

where Q is the last nonzero module in the composition series of N (so Q is simple). We

can apply the HomA(−,M) functor to get another exact sequence

0→ HomA(N/Q,M)→ HomA(N,M)→ HomA(Q,M) ' HomA(Q,S)

Note that the length of N/Q is the length of N minus one, so we can use the inductive

hypothesis on this module.
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We have two cases:

• Q ' S, then dim (HomA(Q,S)) = 1 and the multiplicity of S in the composition

series of N/Q is reduced by one, so using the inductive hypothesis

dim (HomA(N,M)) ≤ (m− 1) + 1 = m

• Q 6' S, then dim (HomA(Q,S)) = 0 and the multiplicity of S in the composition

series of N/Q remains the same, which gives

dim (HomA(N,M)) ≤ m+ 0 = m



Chapter 2

Hecke algebras

Let us recall some elementary facts about the symmetric group Sn. We won’t prove any

of the theorems, since all these are all well-known facts. The interested reader can refer

to [MG00]

We denote by Sn the group generated by s1, . . . , sn−1 with relations

s2
i = 1 for all i = 1, . . . , n− 1

sisj = sjsi if |i− j| > 1

sisi+1si = si+1sisi+1 for all i = 1, . . . , n− 2

For any element w ∈ Sn, we define l(w) as the minimal length of any expression as

w = si1 . . . sik . Easily, we have that l(wsi) = l(w)± 1 for all i, w ∈ Sn. To determine that

sign, we have the following lemma

Lemma 2.0.1. For w ∈ Sn, si a generator, we have

l(wsi) =

l(w) + 1 if w(i) < w(i+ 1)

l(w)− 1 if w(i) > w(i+ 1)
, l(siw) =

l(w) + 1 if w−1(i) < w−1(i+ 1)

l(w)− 1 if w−1(i) > w−1(i+ 1)

Lemma 2.0.2. Let w = si1 . . . sik and t = (i, j) a transposition such that l(wt) < l(w).

Then there exists an a ∈ {1, . . . , k} such that

wt = si1 . . . ŝia . . . sik

The following theorem guarantees that two different expressions are essentially the same

26
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Theorem 2.0.3 (Matsumoto).

If si1 . . . sik = sj1 . . . sjk , then one can transform one in the other by repeatedly applying

the relations sisi+1si = si+1sisi+1 and sisj = sjsi (if |i− j| > 1).

2.1 The Hecke algebra

From now on, we denote by K an algebraically closed field.

Definition 2.1.1. Let q ∈ K×. We define the Hecke algebra Hf
n(q) as the associative

unitary K-algebra with generators T1, . . . , Tn−1 and relations

(Ti − q)(Ti + 1) = 0 for all i = 1, . . . , n− 1

TiTj = TjTi if |i− j| > 1

TiTi+1Ti = Ti+1TiTi+1 for all i = 1, . . . , n− 2

Note that if q = 1 then Hf
n(1) = KSn (the group algebra), so the Hecke algebra can be

seen a q-deformation of the group algebra of Sn.

Remark. We can immediately deduce the following equalities

T−1
i = q−1(Ti − q + 1)

T 2
i = (q − 1)Ti + q

Our first goal is to show that Hf
n(q) is a finite-dimensional algebra over K. We do that by

giving an explicit basis

Theorem 2.1.2.

For any w ∈ Sn, we define Tw ∈ Hf
n(q) as Tw = Ti1 . . . Tik if w = si1 . . . sik

a.

Then, the set {Tw}w∈Sn is a basis of Hf
n(q) as a K-vector space, and dimKH

f
n(q) = n!

Proof. To show that these elements generate Hf
n , we need to understand their multiplica-

aNote that Matsumoto’s theorem implies that Tw is well-defined
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tion rule. A simple computation tells us that for any w ∈ Sn, i = 1, . . . , n− 1

TwTsi =

Twsi if l(wsi) > l(w)

qTwsi + (q − 1)Tw if l(wsi) < l(w)

TsiTw =

Tsiw if l(siw) > l(w)

qTsiw + (q − 1)Tw if l(siw) < l(w)

So, by induction on k, any element of the form Ti1 . . . Tik is a linear combination of the

Tw.

To show these elements are also linearly independent, we take E as the free vector space

generated by the symbols ew, w ∈ Sn, and define θi ∈ EndK(E) as

θi(ew) =

esiw if l(siw) > l(w)

qesiw + (q − 1)ew if l(siw) < l(w)

Our goal is to show that these operators satisfy the defining relations of Hf
n(q). If they

do, then we have a homomorphism

θ : Hf
n(q)→ EndK(E)

such that θ(Tw) = θw. So, given
∑
awTw = 0 we also have θ (

∑
awTw) = 0, but this

implies that

0 =
(∑

awθw

)
(eId) =

∑
awew

so aw = 0 for all w, therefore the linear independence is proven. So we just have to prove

our claim.

First, we prove the quadratic one: it is easily obtained using the definition of θi. We have

θ2
i (ew) =

qew + (q − 1)esiw = (q − 1)θi + q if l(siw) > l(w)

qew + (q − 1)(qesiw + (q − 1)ew) = (q − 1)θi + q if l(siw) < l(w)

which implies that, in any case, θ2
i = (q − 1)θi + q.

To prove the braid relations, we need operators ϑi that mimic right multiplication by Ti,



2. Hecke algebras The Hecke algebra 29

just as the θi mimic left multiplication. So we define

ϑi(ew) =

ewsi if l(wsi) > l(w)

qewsi + (q − 1)ew if l(wsi) < l(w)

and first we prove that θiϑj = ϑjθi for all i, j. For any w ∈ Sn, we have

• l(siwsj) = l(w) + 2

θiϑj(ew) = esiwsj = ϑjθi(ew)

• l(siwsj) = l(w)− 2

θiϑj(ew) = q2esiwsj + q(q − 1)(ewsj + esiw + (q − 1)2ew = ϑjθi(ew)

• l(siwsj) = l(w) and l(siw) = l(wsj) < l(w)

θiϑj(ew) = qesiwsj + q(q − 1)esiw + (q − 1)2ew

ϑjθi(ew) = qesiwsj + q(q − 1)ewsj + (q − 1)2ew

To prove this, we need to show that in this case siw = wsj . This easily follows from the

well known fact that l(w) = n(w), where we denote by n(w) the number of inversions

(pairs i < j such that w(i) > w(j)) (see [MG00])

From the inequalities and lemma 2.0.1 we know that j, j + 1 is an inversion in w,

as well as
(
w−1(i+ 1), w−1(i)

)
. We also know that j, j + 1 is not an inversion in

siw and
(
w−1(i+ 1), w−1(i)

)
isn’t either in siw, which means that both (j, j + 1) and(

w−1(i+ 1), w−1(i)
)

are inversions in w but aren’t in siw (and wsj as well).

Then the only possibility is i = w−1(j + 1), and therefore from w(i) = j + 1, w(i+ 1) = j

we get siw = wsj .

• l(siwsj) = l(w) and l(siw) = l(wsj) > l(w)

θiϑj(ew) = θi(ewsj ) = qesiwsj + (q − 1)ewsj

ϑjθi(ew) = ϑj(esiw) = qesiwsj + (q − 1)esiw

With a similar reasoning (as in the previous case) we get wsj = siw which implies the

equality.

• l(siw) < l(w) < l(wsj)

θiϑj(ew) = θi(ewsj ) = qesiwsj + (q − 1)ewsj = ϑj(qesiw + (q − 1)ew) = ϑjθi(ew)
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• l(wsj) < l(w) < l(siw)

ϑjθi(ew) = ϑj(esiw) = qesiwsj + (q − 1)esiw = θi(qewsj + (q − 1)ew) = θiϑj(ew)

Now for any two expressions si1 . . . sik = w = sj1 . . . sjk , and for any z ∈ Sn, we have to

prove that θi1 . . . θik(z) = θj1 . . . θjk(z). By induction on l(z) (base case z = Id, in which

the equality is trivial), we take a sa such that l(zsa) < l(z), so

θi1 . . . θik(z) = θi1 . . . θikϑa(zsa) = ϑaθi1 . . . θik(zsa)

?
= ϑaθj1 . . . θjk(zsa) = θj1 . . . θjkϑa(zsa) = θj1 . . . θjk(z)

where we used the inductive hypothesis on the ? equality. So, we proved that braid

relations are satisfied by the θi and we are done

Before moving to affine Hecke algebras (the ones we are really interested in), we highlight

a special element of Hf
n(q) that will play an important role.

Lemma 2.1.3. Let

z =
∑
w∈Sn

Tw

For any σ ∈ Sn we have Tσz = ql(σ)z.

Moreover, if z′ ∈ Hf
n(q) is another element with this property, then z′ = λz for some

λ ∈ K.

Proof. We prove the first claim by induction on l(σ).

l(σ) = 1 We divide Sn inAσ = {u ∈ Sn | l(σu) > l(u)} andBσ = {u ∈ Sn | l(σu) < l(u)}.

Tσz = Tσ

(∑
u∈Aσ

Tu +
∑
u∈Bσ

Tu

)
=
∑
u∈Aσ

Tσu +
∑
u∈Bσ

qTσu + (q − 1)Tu =

?
= q

∑
u∈Aσ

Tu +
∑
u∈Bσ

Tu + (q − 1)Tu = q
∑
u∈Aσ

Tu + q
∑
u∈Bσ

Tu = qz

where ? holds because u ∈ Bσ implies σu ∈ Aσ, since left multiplication by σ gives a

bijection between Aσ and Bσ.

l(σ) > 1 Let π, ρ such that σ = πρ and l(π) + l(ρ) = l(σ). Then, by induction

Tσz = TπTρz = Tπ(ql(ρ)z) = ql(π)ql(ρ)z = ql(σ)z
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To prove the second claim, we first show that if z′ =
∑
awTw, aw ∈ K, then we have

aσw = aw for all σ = si , i = 1, . . . , n− 1. Defining Aσ and Bσ as above, we get

∑
w∈Sn

qawTw =
∑
w∈Aσ

qaσwTw +
∑
w∈Bσ

(aσwTw + (q − 1)awTw)

which gives, because of the linear independence of the Tw , aw = aσw if w ∈ Aσ, and

qaw = aσw + (q − 1)aw =⇒ aw = aσw if w ∈ Bσ.

Now, this easily implies the thesis, since if σ = si1 . . . sik then

aσ = asi1σ = asi2σ = · · · = aId

2.2 The affine Hecke algebra

Definition 2.2.1. Let q ∈ K×, q 6= 1. We define the affine Hecke algebra Hn(q) as the

associative unitary K-algebra with generators T1, . . . , Tn−1, X
±1
1 , . . . , X±1

n and relations

(Ti − q)(Ti + 1) = 0 for all i = 1, . . . , n− 1

TiTj = TjTi if |i− j| > 1

TiTi+1Ti = Ti+1TiTi+1 for all i = 1, . . . , n− 2

XiXj = XjXi for all i, j = 1, . . . , n

XiX
−1
i = X−1

i Xi = 1 for all i = 1, . . . , n

XiTj = TjXi if i− j 6= 0, 1

TiXiTi = qXi+1 for all i = 0, . . . , n− 1

Definition 2.2.2. Let q = 1 ∈ K×. We define the degenerate affine Hecke algebra Hn(1)

as the associative unitary K-algebra with generators T1, . . . , Tn−1, X1, . . . , Xn and relations

T 2
i = 1 for all i = 1, . . . , n− 1

TiTj = TjTi if |i− j| > 1

TiTi+1Ti = Ti+1TiTi+1 for all i = 1, . . . , n− 2

XiXj = XjXi for all i, j = 1, . . . , n

XiTj = TjXi if i− j 6= 0, 1

Xi+1Ti = TiXi + 1 for all i = 0, . . . , n− 1
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Note that Hf
n(q) is a subalgebra of Hn(q). Another important subalgebra is

Pn = K[X±1
1 , . . . , X±1

n ] if q 6= 1, Pn = K[X1, . . . , Xn] if q = 1.

Remark. If q 6= 1, a simple computation gives us these (useful) relations

XiTi = TiXi+1 + (1− q)Xi+1

Xi+1Ti = TiXi + (q − 1)Xi+1

Lemma 2.2.3. With the above definitions, Hn(q) ' Hf
n(q)⊗K Pn.

In particular, Hn(q) is a free right Pn-module of rank n! with basis {Tw, w ∈ Sn} b .

Proof. The fact that the elements Ti ⊗Xj are generators is implied by the fact that any

element in Hn(q) can be written as a linear combination of elements like

Ti1 . . . TikXj1 . . . XjhX
−1
u1 . . . X

−1
uh

In fact we can always “move to the far right” all X elements, using the relations above.

In particular, the last one is equivalent to XiTi = qT−1
i Xi+1, where we use the formula in

2.1 for T−1
i .

To show that they are linearly independent, we show that {Tw}w∈Sn is a base of Hn(q)

viewed as a right Pn module. It is enough to define

ρ : Hn(q) −→ End
(
Hf
n(q)

)
where

ρ(Ti)(Tw) = TiTw

ρ(Xi)(TId) = TId

and, by induction on the length, if w = sju with l(u) < l(w)

ρ(Xi)(Tsju) =

• Tsjρ(Xi)(Tu) if i− j 6= 0, 1

•
Tsiρ(Xi+1)(Tu) + (1− q)(ρ(Xi+1)(Tu)) if q 6= 1

Tsiρ(Xi+1)(Tu)− Tu if q = 1
if i = j

•
Tsjρ(Xi−1)(Tu) + (q − 1)(ρ(Xi)(Tu)) if q 6= 1

Tsjρ(Xi−1)(Tu)− Tu if q = 1
if i = j + 1

Since, by definition, ρ is an homomorphism (we defined it in a way that makes it commute

with right multiplication by Xi in Hn), and (still by definition) the set ρ(Tw)w∈Sn is a set

bin this notation Ti = Tsi where si = (i, i+ 1) ∈ Sn
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of linearly independent elements, it follows that Hn(q) is a free right Pn-module with basis

{Tw}w∈Sn .

Remark. We can define an isomorphism Hn −→ Hopp
n , Ti 7→ Ti, Xi 7→ Xi that allows us

to switch between left and right Hn-modules.

We also have an action of Sn on Pn by permutation of the indexes. In particular, the

following identity (see [Lus89] for the proof) will be useful.

Lemma 2.2.4. For any p ∈ Pn

Tip− si(p)Ti =

(q − 1)(1−XiX
−1
i+1)−1(p− si(p)) if q 6= 1

(Xi+1 −Xi)
−1(p− si(p)) if q = 1

A remarkable corollary of this proposition is that this action gives a inclusion of PSnn in

the center of the affine Hecke algebra Z(Hn). We will not need that, but this is actually

an equality. The interested reader can find the proof of the other inclusion in proposition

4.1 of [Gro99].

Following [Kat81], we now focus on showing the irreducibility of a particular family of

representations of Hn(q). From now on, q 6= 1.

Let C be a ring, and f : Pn → C a unitary ring homomorphism (that implies C has a

(Pn, Pn)-bimodule structure). We define

Mf = Hn ⊗Pn C

This is a (Hn, C)-bimodule, and in particular, a free right C-module with basis

{φw = Tw ⊗ 1, w ∈ Sn}

The action is defined as XiφId = F (Xi)φId, and TwφId = φw.

For any nonzero a in K, taking C = K and fa : Pn → K , p 7→ p(a) as the evaluation

homomorphism, we denote by Ma = Mfa defined as above. Our goal is to prove

Theorem 2.2.5. For any nonzero a ∈ K, Ma is irreducible as a Hn-module.

We start with a lemma that implies the thesis
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Lemma 2.2.6. If z =
∑
w∈Sn

φw is a cyclic generator of Ma, then Ma is irreducible.

Proof. We begin by proving that the elements Xi − a, viewed as linear operators on Ma,

act as nilpotent endomorphisms. We just need to prove it on generators φw, and this can

easily be done by induction on l(w) once we notice that, putting si = (i, i+ 1) ∈ Sn

(Xi − a)φsj = (Xi − a)TjφId

= XiTjφId − aφsj =


TjF (Xi)φId − aφsj = 0 if i− j 6= 0, 1

(TiXi+1 + (1− q)Xi+1)φId − aφsj = a(1− q)φId if i− j = 0

(TjXj + (q − 1)Xj+1)φId − aφsj = a(q − 1)φId if i− j = 1

For any N ⊂Ma submodule, since obviously (Xi − a)(Xj − a) = (Xj − a)(Xi − a), there

exists a nonzero m ∈ N such that for all i = 1, . . . , n we have Xim = am. So we can

define a morphism of Hn-modules

γ : Ma −→ N

p⊗ α 7−→ αpm

which is well-defined because of the universal property of tensorial product.

Since, by hypothesis, Ma is generated by z and γ(φId) = m 6= 0, then γ(z) 6= 0. But since

for any w ∈ Sn
Twγ(z) = ql(w)γ(z)

then by lemma 2.1.3 γ(z) = λz. But this implies N = Ma, hence Ma is irreducible.

Now we just need to prove that z is a cyclic generator of Ma.

To do that, we prove that given h = (h1, . . . , hn) where hi are integers such that

0 ≤ hi ≤ n − i , the elements Xhz = Xh1
1 . . . Xhn

n z are linearly independent (since there

are n! such elements, this is equivalent to showing that those are generators).

We take R = K
[
X±1

1 , . . . , X±1
n ,
{

(Xi −Xj)
−1
}
i 6=j

]
and F : Pn → R the natural inclusion.

We also denote by fw, for any w ∈ Sn, the map f ◦w : Pn → R where w : Pn → Pn acts as

a permutation on the indexes of Xi (so w(Xi) = Xw(i)). With a slight abuse of notation,

to make things easier, we put ti = f(Xi), and twi = f ◦ w(Xi) = f(Xw(i)) (so twi = tw(i)).
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Lemma 2.2.7. For any w ∈ Sn, there exist elements Γi = φsi + aiφId ∈ Mfw , ai ∈ R,

such that

Xk(Γi) = twsi(k)Γi

for all k = 1, . . . , n− 1

Proof. We distinguish three cases

• k 6= i, i+ 1

Xk(Γi) = Xk(φsi + aiφId) = XkTi(φId) + aitw(k)φId = TiXk(φId) + aitw(k)φId

= Ti(tw(k)φId) + aitw(k)φId = tw(k)(φsi + aiφId) = tw(k)Γi = twk Γi

Note that, since si(k) = k, this works for any ai ∈ R.

• k = i

Xi(Γi) = Xi(φsi + aiφId) = XiTi(φId) + aitw(i)φId

= TiXi+1(φId) + (1− q)Xi+1(φId) + aitw(i)φId

= Ti(tw(i+1)φId) + (1− q)tw(i+1)φId + aitw(i)φId

= tw(i+1)φsi + ((1− q)tw(i+1) + aitw(i))φId

We have the thesis only if

ai =
(1− q)tw(i+1)

tw(i+1) − tw(i)

• k = i+ 1

Xi+1(Γi) = Xi+1(φsi + aiφId) = Xi+1Ti(φId) + aitw(i+1)φId

= TiXi(φId) + (q − 1)Xi+1(φId) + aitw(i+1)φId

= Ti(tw(i)φId) + (q − 1)tw(i+1)φId + aitw(i+1)φId

= tw(i)φsi + ((q − 1)tw(i+1) + aitw(i+1))φId

Since the only choice of ai that makes the thesis true is the same as before, we proved

the lemma.
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Proposition 2.2.8. There exists a base of Mf {Γw}w∈Sn with the following properties:

1) XiΓw = tw−1(i)Γw for all i = 1, . . . , n

2) Γw = φw +
∑
z<w

azwφz, with azw ∈ R.

Proof.

1) By induction on l(w). We define ΓId = φId for the base case. Now, for any w = sjy,

with l(y) < l(w), named Γy the element obtained from the inductive hypothesis we

can define

Ay : M
fy−1 −→Mf

p⊗ r 7→ p (rΓy)

and Γw = Ay(Γj), where Γj is the element defined in the previous lemma. This is

the element we were looking for, since

Xi(Ay(Γj)) = Ay(Xi(Γj)) = Ay(tsj(i)Γj) = ty−1sj(i)Ay(Γj)

= tw−1(i)Ay(Γj)

holds after observing that fy
−1
(
Xsj(i)

)
= f

(
Xy−1sj(i)

)
.

2) Again, by induction on l(w) (base case is obvious), for w = sjy we have

Γw = Ay(φsj + ajφId) = Ay(Tj ⊗ 1 + 1⊗ aj)

= Tj(Γy) + ajΓy = Tj

(
φy +

∑
z<y

azyφz

)
+ aj

(
φy +

∑
z<y

azyφz

)
= φsjy +

∑
z<sjy=w

bzwφz

Note that if we express the elements {Γw}w∈Sn as a matrix with respect to the basis

{φw}, both ordered by inverse length, we get an upper triangular matrix with 1 on

any diagonal entry, which implies those elements are a basis.
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We define

ci,j =
qtj − ti
tj − ti

and, for any w ∈ Sn,

cw =
∏

i<j,w(i)<w(j)

ci,j

Lemma 2.2.9. If z =
∑
w∈Sn

φw, then z =
∑
w∈Sn

cwΓw−1

Proof (Sketch). Since Γw−1 is a basis, there an expression of z =
∑
w∈Sn

dwΓw−1 . We have

to see that the coefficients are the cw we defined before.

First, note that

φsi + φId = φsi + aiφId + (1− ai)φId

= Γi +

(
1− (1− q)ti+1

ti+1 − ti

)
φId

= Γi + ci,i+1ΓId = Γi + csiΓId

Consider the upper triangular matrix from the basis {φw} to the basis {Γw}, expressed by

the relation (2) of the previous proposition. If we invert it, we get that for some hwz ∈ R

φw = Γw +
∑
z<w

hwz Γz

In particular, if we consider the longest permutation w0 = w−1
0 ∈ Sn (the one given by

w0(i) = n− i+ 1), we have that dw0 = 1 = cw0 , since Γw0 only appears in the expression

of φw0 .

Using these facts, the thesis can be proved by strong inverse induction on l(w) (see also

[Ram03] and [RK02] for an explicit computation).

We can now prove the theorem.

Proof. (Theorem 2.2.5)

Remember we want to prove that the elements
{
Xhz

}
h=(h1,...,hn),hi≤n−i

are linearly inde-



2. Hecke algebras The affine Hecke algebra 38

pendent. With respect to the basis {Γw}, we have

Xhz =
∑
w∈Sn

cwt
w(h)Γw−1

where tw(h) = th1w(1) . . . t
hn
w(n). Our claim is then equivalent to proving that, denoting by θ

the n!× n! matrix θw,h = (cwt
w(h)), det θ 6= 0.

First note that defining the matrix τ = τw,h = (tw(h)) we have

det θ =
∏
w∈Sn

cw det(τ)

First we focus on
∏
w∈Sn

cw. For any fixed couple i < j, there are exactly n!
2 permutations

w with w(i) < w(j) and n!
2 with w(i) > w(j), so from the definition of cw we easily get

∏
w∈Sn

cw =
∏
i<j

c
n!
2
i,j

To get a better expression for det(τ), first note that for any fixed permutation w ∈ Sn,

the rows corresponding to w and (i, j)w are the same if ti = tj . So any 2 × 2 minor is

divided by (ti − tj). Therefore, by Laplace expansion, det(τ) is divided by
∏
i<j

(ti − tj)
n!
2 .

Now we calculate the degree of det(τ). We prove by induction on n that

d = deg(det(τ)) =

(
n

2

)
n!

2

The base case is trivial. For the inductive step, note that the monomials th with h1 = k

contribute
(
n−1

2

) (n−1)!
2 + k(n− 1)! to deg(det(τ)), so we get

d =

n−1∑
k=0

(
n− 1

2

)
(n− 1)!

2
+ k(n− 1)! = n

(
n− 1

2

)
(n− 1)!

2
+
n(n− 1)

2
(n− 1)!

=
n!

2

((
n− 1

2

)
+ n− 1

)
=
n!

2

((
n− 1

2

)
+

(
n− 1

1

))
=

(
n

2

)
n!

2

This proves that det(τ) is a scalar multiple of
∏
i<j

(ti − tj)
n!
2 . We just need to prove that

scalar isn’t 0, and again we do that by induction on n. As base case we take n = 2, in
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which

τ2 =

(
1 t1

1 t2

)
⇒ det(τ) = t2 − t1 6= 0

For the inductive step, it is enough to observe that putting tn = 0 we get

det(τn) = ±(t1 . . . tn−1)
n!
2 det(τn−1) 6= 0

So, we have an expression for both det(τ) and
∏
w∈Sn

cw. Putting them together, we get

det(θ) =
∏
w∈Sn

cw det(τ) = λ
∏
i<j

c
n!
2
i,j ·

∏
i<j

(ti − tj)
n!
2

= λ
∏
i<j

(qtj − ti)
n!
2

(tj − ti)
n!
2

(ti − tj)
n!
2 = λ

∏
i<j

(qtj − ti)
n!
2

Now, since in our example ti = a, we finally get

det(θ) = λ(a(q − 1))(
n
2)
n!
2

Remembering that a 6= 0 and q 6= 1, we are done.

2.3 Locally nilpotent modules

From now on, we fix a ∈ K, a 6= 0 and q 6= 1, and define xi = Xi − a. We denote by mn

the maximal ideal in Pn generated by x1, . . . , xn, and nn = mSn
n . The following lemma

will be very useful

Lemma 2.3.1.

PSrn =
⊕

0≤ai≤r−i
xa1r+1 . . . x

an−r
n PSnn

Proof. A priori, we have PSn−1
n =

∞⊕
i=0

xinP
Sn
n .

Denoting by

em(x1, . . . , xn) =
∑

1≤i1<···<im≤n
xi1 . . . xim ∈ PSnn
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the m-th elementary function in n variables, we have the identity

xnn =

n−1∑
i=0

(−1)n+1+ixinen−i(x1, . . . , xn)

which implies that xln ∈
⊕n−1

i=0 x
i
nnn for all l ≥ n. So, actually,

PSn−1
n =

n−1⊕
i=0

xinP
Sn
n

The canonical isomorphisms given by multiplication P
Sj
j ⊗ P[j+1,n]

∼−→ P
Sj
n , let us deduce

the thesis by (inverse) induction.

We denote by
ˆ
PSnn the completion of PSnn at nn, that is,

ˆ
PSnn = lim

←

(
PSnn /(nn)i

)
We also put P̂n = Pn⊗PSnn

ˆ
PSnn and Ĥn = Hn⊗PSnn

ˆ
PSnn . We are interested in a particular

category of modules

Definition 2.3.2. Nn is the category of locally nilpotent Ĥn modules. Equivalently, Nn
is the category of Hn-modules in which nn acts locally nilpotently, meaning that for any

module M ∈ Nn, m ∈M , there exists i > 0 such that ninm = 0.

To study Nn, it is better to focus on quotients of the affine Hecke algebra by nn. We now

define the main objects of this section.

Definition 2.3.3.

H̄n = Hn/(Hnnn) , P̄n = Pn/(Pnnn)

Since nn ⊂ Z(Hn), then Hnnn is a two-sided ideal, H̄n is an algebra.

We have a isomorphism (given by multiplication)

P̄n ⊗Hf
n
∼−→ H̄n
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Also, lemma 2.3.1 implies that the map

∑
0≤ai<i

Kxa11 . . . xann
∼−→ P̄n

is a (canonical) isomorphism. This, with theorem 2.2.3, implies that dimKH̄n = (n!)2.

Theorem 2.3.4.

H̄n is a simple algebra. In particular, H̄n has only one irreducible module.

Proof. Recall the definition of the irreducible Hn-module Ma in the previous section.

Given the definition of the action, any element of nn acts as 0 on Ma (recall nn ⊂ Z(Hn)).

Therefore, the whole nn action on Ma is 0, that is, Ma is a H̄n-module. Consider

φ : H̄n → EndK(Ma)

Jacobson density theoremc implies the surjectivity of φ. But we know that dimMa = n!, so

dim(EndK(Ma)) = (n!)2 = dim(H̄n). So φ is an isomorphism and H̄n is, therefore, simple.

Since it is finite-dimensional, this also implies that it has only one irreducible module.

Remark. Note that Ma ' Hn ⊗Pn Pn/mn ∈ Nn. In particular, Ma is the unique simple

object of Nn. From now on, we denote it by Kn.

Now we define two particular elements that allow us to consider particular submodules

of Hn and its subobjects, essentially giving a splitting of the action of Hn on any of its

modules.

Definition 2.3.5. Let 1 and sgn be the one-dimensional representations of Hf
n given

by Ti → q and Ti → −1 respectively. We define cτn =
∑

w∈Sn q
−l(w)τ(Tw)Tw where

τ ∈ {1, sgn}, which more explicitly becomes

c1
n =

∑
w∈Sn

Tw

csgnn =
∑
w∈Sn

(−q)−l(w)Tw

In particular, we have c1
nc
sgn
n = csgnn c1

n = 0 for all n ≥ 2.

cNote that we need K to be algebraically closed
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For any 0 ≤ i ≤ j ≤ n, we denote by S[i,j] the symmetric group on {i, i+ 1, . . . , j}. We

can define with same relations the Hecke algebra Hf
[i,j] and the affine Hecke algebra H[i,j],

and we can put cτ[i,j] =
∑

w∈S[i,j]
q−l(w)τ(Tw)Tw. Also, for any subset B ⊆ Sn, we can also

define cτB =
∑

w∈B q
−l(w)τ(Tw)Tw. With these definitions, we have

cτn = cτ[Sn/Si]c
τ
i = cτi c

τ
[Si\Sn]

where we denote by [Sn/Si] the set of minimal length representatives of right cosets, and

by [Si\Sn] the left one. A proof of these relations is not essential to our work, so we remind

to [Xi94].

Proposition 2.3.6. Ma ' H̄nc
τ
n as Hn-modules.

Proof. Since z = c1
n is evidently a cyclic generator of H̄nc

1
n, we can use the same argument

of lemma 2.2.6 to prove its irreducibility. Since H̄nc
1
n has dimension n! over K, the only

possibility is that Ma ' H̄nc
τ
n.

A similar argument proves the case τ = sgn.

We omit the proof of this lemma, since it is a technical tool to prove the subsequent

proposition

Lemma 2.3.7. Let f : M → N be a morphism of finitely generated P̂Snn -modules. Then

f is surjective if and only if f ⊗
P̂Snn

P̂Snn /n̂n is surjective.

Proposition 2.3.8. There exist isomorphisms

Ĥnc
τ
n ⊗K

n−1⊕
i=0

xinK
∼−→ Ĥnc

τ
n ⊗P̂Snn P̂Sn−1

n
∼−→ Ĥnc

τ
n−1

Proof. The first isomorphism follows from 2.3.1. For the second one, we define it as the

one given by multiplication. Since both terms are free P̂Snn -modules, and since they have

the same rank n · n! d, it is enough to show that the map is surjective. Thanks to the

lemma above, we do that after applying −⊗
P̂Snn

P̂Snn /n̂n.

Note that, since P
Sn−1
n =

⊕
xain P

Sn
n , after tensoring we get

Ĥnc
τ
n ⊗P̂Snn P̂Sn−1

n ⊗
P̂Snn

P̂Snn /n̂n ' H̄nc
τ
n ⊗K[xn]/(xnn)

dsince Ĥnc
τ
n−1 ' P̂n ⊗Hf

nc
τ
n−1



2. Hecke algebras Locally nilpotent modules 43

where we considered the canonical surjective map

K[xn]→ PSn−1
n ⊗

PSnn
PSnn /nn

(we know from theorem 2.3.1 that it factors through K[xn]/(xnn)).

Since the elements cτn, c
τ
nxn, . . . , c

τ
nx

n−1
n are all linearly independent in H̄n, the image of

f is a faithful K[xn]/(xnn)-module. The simplicity of H̄nc
τ
n implies that f is injective,

but since dimKH̄nc
τ
n−1 = n · n!, this shows that f is an isomorphism and, in particular,

surjective.

The following propositions serve the purpose to establish a category equivalence which

will be useful in studying sl2-categorifications.

Proposition 2.3.9. There exist isomorphisms

Ĥnc
τ
n ⊗K

⊕
0≤ai<i

xa11 . . . xann K ∼−→ Ĥnc
τ
n ⊗P̂Snn P̂n

∼−→ Ĥn

Proof. See [CR08].

Proposition 2.3.10. We have cτnĤnc
τ
n = P̂Snn cτn

(
= cτnP̂

Sn
n

)
. Also, the multiplication

map cτnĤn ⊗Ĥn Ĥnc
τ
n → cτnĤnc

τ
n is an isomorphism.

Proof. We have an isomorphism Pn ' Ĥnc
τ
n, p 7→ pcτn, so for any h ∈ Ĥn we have that

there exists a p ∈ P̂n such that cτnhc
τ
n = pcτn.

Since Tic
τ
n = τ(Ti)c

τ
n, it follows that Tipc

τ
n = τ(Ti)pc

τ
n, and

(Tip− si(p)Ti)cτn = τ(Ti)(p− si(p))cτn

Comparing this with the result obtained in lemma 2.2.4 we deduce that p − si(p) = 0,

which implies that cτnĤnc
τ
n ⊆ P̂Snn cτn.

From the previous proposition, the map Ĥnc
τ
n ⊗P̂Snn P̂n

∼−→ Ĥn is an isomorphism, and

so is the map cτnĤnc
τ
n ⊗P̂Snn P̂n

∼−→ cτnĤn given by multiplication, which implies that the

canonical map

cτnĤnc
τ
n ⊗P̂Snn P̂n

∼−→ P̂Snn cτn ⊗P̂Snn P̂n

is also an isomorphism. So, cτnĤnc
τ
n ' P̂Snn cτn.

Since we proved that cτnĤn ⊗Ĥn Ĥnc
τ
n is a free P̂Snn -module of rank 1, the multiplication



2. Hecke algebras Quotients 44

map

cτnĤn ⊗Ĥn Ĥnc
τ
n → cτnĤnc

τ
n

is a surjective morphism of free P̂Snn -module of rank 1, so it is an isomorphism.

Proposition 2.3.11. The functors Hnc
τ
n⊗PSnn − and cτnHn⊗Hn− are inverse equivalences

of categories between the category of locally nn-nilpotent PSnn -modules and Nn.

Proof. Essentially, we want to show that the inverse limits at nn of these algebras are

Morita equivalent. It is enough to prove that there exists an exact (Ĥn, P̂
Sn
n )-bimodule M

such that M ⊗
P̂Snn

M∗ ' Ĥn as (Ĥn, Ĥn)-bimodules and M∗⊗ĤnM ' P̂
Sn
n as (P̂Snn , P̂Snn )-

bimodules (see 4.2.1 for more details on this approach).

We take M = Ĥnc
τ
n (so M∗ ' cτnĤn, using that Pn ' Ĥnc

τ
n and its analogue, with the

usual pairing between polynomialse ). We know that the map Ĥnc
τ
n ⊗P̂Snn P̂n → Ĥn is

an isomorphism from proposition 2.3.9. This implies that the morphism of (Ĥn, Ĥn)-

bimodules

Ĥnc
τ
n ⊗P̂Snn cτnĤn −→ Ĥn

hc⊗ ch′ 7→ hch′

is an isomorphism.

The commutativity of P̂Snn together with the second proposition implies that

P̂Snn ' cτnĤn ⊗Ĥn Ĥnc
τ
n

as (P̂Snn , P̂Snn )-bimodules, which concludes the proof.

2.4 Quotients

For any i = 1, . . . , n, let i : Hi → Hn denote the natural inclusion, and let π : Hn → H̄n be

the natural projection. We define H̄i,n as π(i(Hi)). We also define P̄i,n = Pi/(Pi∩ (Pnnn),

and note that Hf
i ⊗ P̄i,n

∼−→ H̄i,n.

We have the following theorem

edefined as ((f(x1, . . . , xn), g(x1, . . . , xn)) 7→
((
f( d

dx1
, . . . , d

dxn

)
(g)
)

(0, . . . , 0)
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Theorem 2.4.1.

i) i is injective

ii) H̄i,n has a unique irreducible module

iii) For all j ≥ i, j ≤ n, H̄j,n is a free H̄i,n module of rank (n−i)!j!
(n−j)!i!

Proof.

i) This is a consequence of lemma 2.2.3. In fact, i is a morphism of Pn-modules that

sends Tw ∈ Hi to Tw ∈ Hn, that is, sends a basis of Hi in a collection of linearly

independent elements in Hn, hence it is injective.

ii) First, note that we have the following exact sequence (because of the third isomor-

phism theorem)

0→ Hini
Hini ∩Hnnn

→ H̄i,n → H̄i → 0

If we show that Hini
Hini∩Hnnn ⊂ Rad(H̄i,n) we are done, since the radical annihilates

every simple module. Since the Jacobson radical contains every nilpotent ideal, it

is equivalent to show that the same ideal is nilpotent, which is true if, for some k,

(Hini)
k ⊆ Hnnn holds.

Denote by η1, . . . ηn the elementary symmetric polynomials in n variables (which

generate nn), and ι1, . . . , ιi the ones in i variables. We want to show that for any

j = 1, . . . , i there exists some h ∈ N such that ιhj ∈ Hnnn.

Note that if ηl(a) = 0 for any l = 1, . . . , n, then the only possibility is a = 0. In fact,

because of the well known identity

n∏
s=1

(t− as) =

n∑
r=0

(−1)n−rηn−r(a1, . . . , an)tr

we get that if a kills all elementary symmetric polynomials then a is one of the roots

of tn, that is, a = 0.

Since ιk(0) = 0 for any k = 1, . . . , i, that is, ιk vanishes on V (η1, . . . , ηn) (the set of

their common zeroes), Hilbert’s Nullstellensatz implies our claim.

Easily, for any v =
∑
vjιj (vj ∈ Hi) we have that vmax{h1,...hi} ∈ Hnnn, if we denote

by hi the natural number such that ιhii ∈ Hnnn (recall that the elementary symmetric

polynomials are in the center of Hi). So we have the thesis.



2. Hecke algebras Quotients 46

iii) First we note that a base of H̄i,n is given by
{
xh
}
h=(h1,...,hi),hs≤n−s

. The linear inde-

pendence is guaranteed by the one in H̄n, and they are obviously a set of generators.

In particular, we have

dimK(H̄i,n) =
i!n!

(n− i)!

Now, we note that any permutation w ∈ Sj can be decomposed as w = τu, where

τ ∈ Si and u ∈ Sj with the property u(k) < u(k + 1) for any k < i. This, in

particular, implies that l(w) = l(τ) + l(u) and so we have Tw = TτTu. So, for any

element of the base, we can write

xhTw = xhiTτx
hjTu

so the image of the xhjTu elements gives a basis of H̄j,n as a H̄i,n-module. We have

that

H̄j,n = H̄i,n ⊗
⊕

w∈[Si\Sj ]
0≤al≤n−l

(
Kxai+1

i+1 . . . x
aj
j ⊗KTw

)

which implies, since the permutations of u-type are
j!

i!
, that

dimH̄i,n
H̄j,n =

(n− i)!j!
(n− j)!i!



Chapter 3

sl2-categorifications

We want to categorify sl2 actions, meaning that we want to give the right notion of an sl2

action on an abelian category. To answer this question, the best approach is to look at sl2

actions on specific categories looking for specific common structures.

As an example, if we consider the category C =
⊕

n Rep(Sn) (formed by putting together

all the representation categories of all symmetric groups, on a fixed field we do not specify),

and take the induction functors IndKSn
KSn−1

and the restriction functors ResKSnKSn−1
, these

induce an sl2 action on K0(C). Moreover, there is a natural endomorphism of Ind given

by the action of the Jucys-Murphy element (1, n) + (2, n) + · · ·+ (n− 1, n), and a natural

endomorphism of Ind2 given by the action of (n, n+ 1).

These morphisms are present in many other examples of an sl2-type of action, which is

why Chuang and Rouquier defined a notion of sl2-categorification the way we are about

to see. With this in mind, we start to give the appropriate definitions.

Throughout the whole chapter, K is an algebrically closed field and C is a K-linear abelian

category of finite type, with the property that the endomorphism ring of any simple object

is the field K.

3.1 Weak sl2-categorifications

We start by looking at a category with “just” an sl2 action on its Grothendieck group

compatible with its generators (simple objects). We can already obtain some results,

but we do not get the nice properties of sl2-representations (for example we are unable

47
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to identify a categorical analogue of the unique simple module in a given dimension).

Moreover, not every weak sl2-categorification can become a proper sl2-categorification (we

will mention two examples), so this highlights the importance of the additional structure

even more.

Definition 3.1.1. A weak sl2-categorification is the data of two adjoint exact functors

E,F : C → C such that

• The action of [E] and [F ] on V = Q⊗K0(C) gives a locally finite sl2-representation

• The classes of simple objects of C are weight vectors

• F is isomorphic to a left adjoint of E

As with sl2-representations in chapter one, often we write E+ = E, E− = F . Also, we

denote by ε : EF → Id the co-unit, and η : Id→ FE the unit of the adjunction.

We have some (immediate) implications

• E = F = 0 gives a weak sl2-categorification, called trivial.

• If C has a weak sl2-categorification, then Copp admits one too.

• If we fix an isomorphism between F and some left adjoint of E, we get that swapping

E and F gives another weak sl2-categorification. We call it the dual.

• In the case C = A- mod for some finite dimensional algebra A, the first condition

is equivalent to the same condition for K0(C- proj) a. Essentially that is because

of lemma 1.2.2, that implies the sl2-action on Ṽ = Q ⊗K0(C- proj) is well-defined.

Note that this doesn’t mean that C- proj has a weak sl2-categorification, but only

that Ṽ has a natural sl2-module structure.

In this case, the perfect pairing

K0(C- proj)×K0(C) −→ Z

([P ], [S]) 7→ dimK HomC(P, S)

induces an isomorphism of sl2-modules between K0(C) and the dual of K0(C- proj).

aWe are subtly using that any finitely generated module admits a projective resolution. This is well-
known and a proof can be found, among the others, in [Jac12]
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Definition 3.1.2.

Let C, (E,F ) and C′, (E′, F ′) be two weak sl2-categorifications. A morphism of weak sl2-

categorifications is the data of a K-linear functor R : C′ → C and of isomorphisms of

functors ζ± : RE′±
∼−→ E±R such that one of the following diagrams is commutative (each

one determines the other. In fact, only one of ζ+ and ζ− is needed, since the other is

uniquely determined)

RF ′
ζ− //

η1RF ′
��

FR ER

1ERη
′

��

ζ−1
+ // RE′

FERF ′
1F ζ
−1
+ 1F ′

// FRE′F ′

1FR ε′

OO

ERF ′E′
1Eζ−1E′

// EFRE′

ε1RE′

OO

Note that choosing 1C : C → C, ζ± = E± gives the identity morphism of weak sl2-

categorifications. Also note that any two morphisms R : C → C′, S : C′ → C′′ can be

composed to give another morphism S ◦R : C → C′′.
Moreover, for any full subcategory D of C stable under subobjects, quotients, E and F ,

the canonical functor D → C is a morphism of weak sl2-categorifications.

Also note that R, being K-linear, induces a morphism of sl2-modules

[R]⊗ 1 : K0(C′- proj)⊗Q→ K0(C)⊗Q

In particular, in the general caseR does not induce a homomorphism between the Grothendieck

groups of the two categories, since exact sequences are not guaranteed to be preserved in

the case of non-projective objects (R is not required to be an exact functor).

We now prove a useful lemma

Lemma 3.1.3. The commutativity of any of the two diagrams in the definition above is

equivalent to the commutativity of either of these two diagrams

R
1Rη

′

yy

η1R

$$

R
1Rε
′

yy

ε1R

$$
RF ′E′

ζ−1E′
// FRE′

1F ζ+
// FER RE′F ′

ζ+1F ′
// ERF ′

1Eζ−
// EFR

Proof. Let us prove the above diagrams are commutative for any morphism of weak sl2-
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categorifications R. It is enough to consider the following diagram

R
η1R //

1Rη
′

��

FER
1F ζ
−1
+ //

1FERη
′

��

FRE′

Id

))
RF ′E′

ζ−1E′

55η1RF ′E′
// FERF ′E′

1F ζ
−1
+ 1F ′E′

// FRE′F ′E′
1FRε

′1E′
// FRE′

A similar argument works for the second diagram. Viceversa, if we have the commutativity

of the first diagram we can write

RF

1Rη
′1F ′ ))

η1RF ′

��

Id // RF ′
ζ− // FR

RF ′E′F ′

ζ−1E′F ′ **

1RF ′ε
′

OO

FERF ′
1F ζ
−1
+ 1F ′

// FRE′F ′

1FRε
′

OO

that, being commutative, proves that (R, ζ±) is indeed a morphism of weak sl2-categorifications.

Again, the second case can be proved with a similar argument.

We now fix a weak sl2-categorification on C, and investigate its properties.

Proposition 3.1.4. Let Vλ be a weight space of V , and let Cλ be the full subcategory

of objects of C whose class is in Vλ. Then C =
⊕

λ Cλ. In particular, the class of any

indecomposable object of C is a weight vector.

Proof. Let M be an object of C with exactly two composition factors S1, S2 (with the

same meaning of theorem 1.3.4), and assume that those are in different weight spaces. It

follows that there is some ? ∈ {+,−}, {i, j} = {1, 2} such that h?(Sj) < h?(Si) = r.

We have Er?M
∼−→ Er?Si 6= 0, which means that Er−?E

r
?M is in the Si weight space, and

so are all the simple objects determined by its composition series. In fact, having a weak

sl2-categorification, all classes of simple objects are weight vectors. So, we have

Hom(Er−?E
r
?M,M) ' Hom(Er?M,Er?M) ' Hom(M,Er−?E

r
?M)
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and this spaces are not zero (since Er? 6= 0 implies 1Er? 6= 0). So, since C is abelian, M

has a nonzero simple subobject and a nonzero simple quotient in the Si weight space. For

uniqueness of the simple components of the composition series, this means that Si is both

a subobject and a quotient of M , which implies that Sj is too. In other words, the exact

sequence 0→ S1 →M → S2 → 0 splits and M ' S1 ⊕ S2.

We have shown that Ext1(A,B) = 0 for any simple A and B in different weight spaces.

This is enough to prove the thesis, because it implies that any two objects with composition

factors pairwise in different weight spaces have null Ext1, so C is indeed a direct sum of

full “weight” subcategories.

In particular, this decomposition even mirrors the fact that a locally finite sl2-module

can be written as an increasing union of finite dimensional sl2-modules. In fact, for any

M ∈ Ob C, we can consider the set of all isomorphism classes of simple objects that are

in the composition series of EiF jM for some i, j. Denote it by I. Since K0(C) ⊗ Q is

locally finite as a sl2-module, for i, j � 0 we have EiF jM = 0, which implies that I is

finite. Taking the Serre subcategory b generated by the objects of I, we have found a

subcategory stable under E and F such that the sl2-module on the Grothendieck group

given by the weak sl2-categorification is finite dimensional.

We now prove a result for the derived category. We state it now because (unlike all the

later results about it) it doesn’t require more structure than a weak sl2-categorification.

Lemma 3.1.5. Let C ∈ ObDb(C) such that HomDb(C)(E
iT,C[j]) = 0 for all i ≥ 0, all

j ∈ Z and all T ∈ Ob C simple such that FT = 0. Then C = 0.

Proof. Suppose C 6= 0, take n minimal such that Hn(C) 6= 0 and S ∈ Ob C simple such

that Hom(S,Hn(C)) 6= 0 (for instance, any simple subobject of Hn(C)) .

Let T be a simple subobject of F h−(S)S, then

Hom(Eh−(S)T, S) ' Hom(T, F h−(S)S) 6= 0

that implies HomDb(A)(E
h−(S)T,C[n]) 6= 0. Since FT = 0, we have an absurd and the

thesis is proven.

bthe smallest full subcategory with the property that if 0→ A→ B → C → 0 is a short exact sequence
in C then A,C ∈ Ob C ⇐⇒ B ∈ Ob C. Essentially, this means that it is closed under subobjects, quotients
and extensions.
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Remark. There is a version of this lemma with Hom(C[j], F iT ) with ET = 0. Also, E

being a right adjoint of F , there are similar statements with E and F swapped.

Proposition 3.1.6. Let C′ be an abelian category and G a complex of exact functors

from C to C′ that all have exact right adjoints. For any M ∈ Ob C, N ∈ Ob C′, we have

Gi(M) = 0, (G∨)i(N) = 0 for |i| � 0. If G(EiT ) is acyclic for all i ≥ 0 and all T ∈ Ob C
simple such that FT = 0, then G(C) is acyclic for all C ∈ Komb(C)

Proof. We denote by G∨ the right adjoint complex to G (see lemma 1.2.3). We have an

isomorphism of Hom-sets in the derived category, for any C,D ∈ ObDb(C)

HomDb(C)(C,G
∨G(D)) ' HomDb(C′)(G(C), G(D))

If C = EiT , those spaces vanish by hypothesis (since an acyclic complex is zero in the

derived category). Applying the lemma we just proved, we know that these spaces vanish

for any C. Then choosing C = D we get that HomDb(C′)(G(C), G(C)) = 0, which means

that G(C) = 0 in Db(C′), which means it is an acyclic complex.

Before moving on to actual sl2-categorification, we investigate a bit more about the action

of E± on simple objects.

Lemma 3.1.7. Let M ∈ Ob C, and assume that d(S) ≥ R for all S simple subobjects

(resp. quotients) of M . Then d(T ) ≥ R for all T simple subobjects (resp. quotients) of

Ei±M , i ≥ 0.

Proof. By the weight space decomposition we proved, it is enough to consider the case in

which M lies in a weight space. Let T be a simple subobjects of Ei±M . Since

Hom(Ei∓T,M) ' Hom(T,Ei±) 6= 0

there exists S simple subobject of M that is a composition factor of Ei∓T . This implies

that d(S) ≤ d(Ei∓T ) ≤ d(T ) and we’re done. An identical argument works for the quotient

case.

Remark. With the same notations of lemma 1.4.4, define C≤d as the full Serre subcategory

of C generated by the objects whose class is in V ≤d. Then, still from lemma 1.4.4, it

follows that the weak sl2-structure on C restricts to one on C≤d and induces one on C/C≤d.
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Theorem 3.1.8. Define Cr as the full subcategory of C≤r with objects M such that if S

is a simple subobject or a simple quotient of M , then d(S) = r. Then, Cr is stable under

E±.

Proof. Again, we only need to consider the case in which M lies in a weight space. So let

M ∈ Cr with such property, and let T be a simple subobject of E±M . We know from the

previous lemma that d(T ) ≥ r. On the other hand,

d(T ) ≤ d(E±M) ≤ d(M)

hence d(T ) = r, so the thesis is proven. The proof for quotients is, again, very similar.
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3.2 sl2-categorifications

Definition 3.2.1. An sl2-categorification is a weak sl2-categorification with the extra

data of q ∈ K× and a ∈ K, with a 6= 0 if q 6= 1, and of X ∈ End(E) and T ∈ End(E2)

such that
• (1ET ) ◦ (T1E) ◦ (1ET ) = (T1E) ◦ (1ET ) ◦ (T1E) in End(E3)

• (T + 1E2) ◦ (T − q1E2) = 0 in End(E2)

• T ◦ (1EX) ◦ T =

qX1E if q 6= 1

X1E − T if q = 1
in End(E2)

• (X − a) is locally nilpotent

Definition 3.2.2.

Let C, (E,F, a, q,X, T ) and C′, (E′, F ′, a′, q′, X ′, T ′) be two sl2-categorifications. A mor-

phism of sl2-categorifications from C′ to C is a morphism of weak sl2-categorifications

(R, ζ±) such that a = a′, q = q′ and the following diagrams commute

RE′

1RX
′

��

ζ+
∼
// ER

X1R
��

RE′E′

1RT
′

��

ζ+1E′

∼
// ERE′ ∼

1Eζ+ // EER

T1R
��

RE′ ∼
ζ+ // ER RE′E′

∼
ζ+1E′

// ERE′
1Eζ+

∼ // EER

The following proposition is the reason we introduced and studied affine Hecke algebras

in Chapter 2.

Proposition 3.2.3. For any n ∈ N

γn : Hn(q)→ End(En)

Ti 7→ 1En−i−1T1Ei−1

Xi 7→ 1En−iX1Ei−1

is a morphism of algebras.

Proof. We have to show that γn respects the relations that define the affine Hecke algebra.

We show the non-immediate ones.
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• (Ti − q)(Ti + 1) = 0

(γn(Ti)− q) ◦ (γn(Ti) + 1) = (1En−i−1T1Ei−1 − q1En) ◦ (1En−i−1T1Ei−1 + 1En)

= 1En−i−1 ((T1Ei−1 − q1Ei+1) ◦ (T1Ei−1 + 1Ei+1))

= 1En−i−1 ((T − q1E2) ◦ (T + 1E2)) 1Ei−1 = 0

• TiTi+1Ti = Ti+1TiTi+1

γn(Ti) ◦ γn(Ti+1)◦γn(Ti) = 1En−i−1T1Ei−1 ◦ 1En−i−2T1Ei ◦ 1En−i−1T1Ei−1

= 1En−i−2(1ET )1Ei−1 ◦ 1En−i−2(T1E)1Ei−1 ◦ 1En−i−2(1ET )1Ei−1

= 1En−i−2 (1ET ◦ T1E ◦ 1ET ) 1Ei−1

= 1En−i−2 (T1E ◦ 1ET ◦ T1E) 1Ei−1

= 1En−i−2T1Ei ◦ 1En−i−1T1Ei−1 ◦ 1En−i−2T1Ei

= γn(Ti+1) ◦ γn(Ti) ◦ γn(Ti+1)

• TiXiTi = qXi+1 , q 6= 1

γn(Ti) ◦ γn(Xi) ◦ γn(Ti) = 1En−i−1T1Ei−1 ◦ 1En−iX1Ei−1 ◦ 1En−i−1T1Ei−1

= 1En−i−1 (T ◦ 1EX ◦ T ) 1Ei−1

= q(1En−i−1X1E1Ei−1) = qγn(Xi+1)

• Xi+1Ti = TiXi + 1 , q = 1

We prove the equivalent TiXiTi = Xi+1 − Ti (right multiplication by Ti is invertible

in Hn(1)).

γn(Ti) ◦ γn(Xi) ◦ γn(Ti) = 1En−i−1T1Ei−1 ◦ 1En−iX1Ei−1 ◦ 1En−i−1T1Ei−1

= 1En−i−1 (T ◦ 1EX ◦ T ) 1Ei−1

= 1En−i−1 (X1E − T ) 1Ei−1

= 1En−i−1X1Ei − 1En−i−1T1Ei−1 = γn(Xi+1)− γn(Ti)

An important remark is that, with our assumptions, as a Hn-module End(En) ∈ Nn.
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Remark. Note that, since (En, Fn) is a pair of adjoint functors, we have an isomorphism

ξ : End(En)
∼−→ End(Fn)opp (3.1)

and, therefore, we have an analogue morphism ξ ◦ γn : Hn → End(Fn)opp.

Remark. We can define an sl2-categorification on the dual category Copp as follows: we

define X̃ as X−1 if q 6= 1, and as −X if q = 1. Then we fix an adjunction (F,E). This

allows us to translate X̃ and T (endomorphisms of E and E2) into endomorphisms of F

and F 2, which we take as defining endomorphisms of the dual categorification. Finally, we

define a∨ = a−1 if q 6= 1, or a∨ = −a if q = 1, and q∨ = 1. This is an sl2-categorification.

Remark. The scalar a can be shifted. If q 6= 1, for any λ ∈ K× we can define a new

categorification replacing X by λX, which changes a into λa. Therefore, a can always be

adjusted to 1. If q = 1 we can do the same: for any λ ∈ K, replacing X with X +λ1E , we

get a changed into a+ λ, which means we can adjust a to 0.

Remark. If V is a multiple of the simple 2-dimensional sl2-module, then a sl2-categorification

is the data of C−1 and C1 with equivalences E : C−1
∼−→ C1 and F its inverse, along with

q, a and X ∈ Z(C1) c (since E2 = 0, T = 0), the only requirement being X − a nilpotent.

However, as soon as V contains a copy of any simple k-dimensional (k ≥ 3) sl2-module,

then a and q are determined by X and T . In fact, as long as E2 6= 0, a and q are de-

termined by the relation T ◦ (1EX) ◦ T = qX1E (or X1E − T implies q = 1), using the

requirement that X − a is locally nilpotent (therefore looking at the eigenvalues of X).

Lemma 3.2.4.

For τ ∈ {1, sgn}, we define the subfunctor E(τ,n) ⊆ En as E(τ,n) = Im {γn(cτn) : En → En}
We have E(n) = E(1,n) ' E(sgn,n), and

En ' n! · E(n)

crecall that the center of a monoidal category is defined as the commutative monoid of endomorphisms
of IdC
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Proof. First, note that En ⊗Hn Hnc
τ
n
∼−→ E(n) is an isomorphism. This is trivial on any

object and respects morphisms. Because of proposition 2.3.11 then we have that the map

E(n) ⊗
PSnn

cτnHn → En

is an isomorphism, too, which implies the thesis.

An example

Recall the following classic definition

Definition 3.2.5. Let A,B K-algebras, φ : A→ B a homomorphism. We can define

IndBA : A- mod −→ B- mod

(objects) M 7→ B ⊗AM
(morphisms) α : M →M ′ 7→ Id⊗α : B ⊗M → B ⊗M ′

and
ResBA : B- mod −→ A- mod

(objects) N 7→ N

(morphisms) β : N → N ′ 7→ β : N → N ′

where in the object definition we use φ to view N as an A-module, and we view β as an

A-module morphism.

Recall also that (IndBA ,ResBA) and (ResBA , IndBA) are pairs of adjoint functors.

Now we describe an sl2-categorification of the 3-dimensional irreducible representation of

sl2 in detail. We define

C−2 = C2 = K , C0 = K[x]/(x2)

and put Ci = Ci −mod. Then we define

E =


Ind0
−2 on C−2 → C0

Res0
2 on C0 → C2

0 on C2 → {0}

, F =


0 on C−2 → {0}

Res0
−2 on C0 → C−2

Ind0
2 on C2 → C0

We put q = 1, a = 0, and we define X as the multiplication by −x on Ind0
−2, and the
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multiplication by x on Res0
2. Finally, we define T ∈ End(E2) : since E2 : C−2 → C2 (it is

zero anywhere else), we note that for any M ∈ C−2, EM is the module K[x]/(x2) ⊗M ,

and E2M is the same space viewed as a vector space (meaning we forget that x can act

on it). We can then define T as the morphism induced by swapping 1 and x in K[x]/(x2),

that is

TM : M ⊗K[x]/(x2) −→M ⊗K[x]/(x2)

m⊗ (ax+ b) 7→ m⊗ (bx+ a)

This is clearly a natural transformation: for any morphism f : M →M ′, defining E2f in

the obvious way d it is clear that swapping the generators of the “right part” of the tensor

doesn’t involve f , viceversa. In other words

(E2f ◦ TM )(m⊗ (ax+ b)) = E2f(m⊗ (bx+ a)) = f(m)⊗ (bx+ a)

= TM (f(m)⊗ ax+ b) = (TM ◦ E2f)(m⊗ (ax+ b))

and we have the desired element T ∈ End(E2).

To check if this is an actual sl2-categorification on C = C−2 ⊕ C0 ⊕ C2, we need to verify

that the conditions given in definition 3.2.1 are fulfilled. We start by showing that this is

a weak sl2-categorification. As we have seen, both (E,F ) and (F,E) are adjoint pairs of

functors. We have seen before that K0(C−2) = K0(C2) ' Z.

From the structure theorem for finitely generated modules over a P.I.D., we know that

the indecomposable elements in (K[x]/(x2))- mod are only (K[x]/(x)) ' K and K[x]/(x2)

itself, so any module is a direct sum of copies of these two modules. From the exact

sequence

0→ K ·x−→ K[x]/(x2)
·x−→ K→ 0

we get [K[x]/(x2)] = 2[K], so K0(C0) ' Z and we get K0(C) ' Z3. Tensoring with Q, we

get a 3-dimensional vector space V . We can easily see that the action of e is given by the

matrix 
0 1 0

0 0 2

0 0 0


in fact e.[K] = K ∈ C0 and e.[K[x]/(x2)] = K[x]/(x2) ∈ C2, seen as a 2-dimensional vector

dEf is just the natural Ef : M ⊗K[x]/(x2)→M ′ ⊗K[x]/(x2) that sends m⊗ n to f(m)⊗ n
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space (so the dimension indeed doubles). An analogue result is true for f , and this proves

that K0(C) ⊗ Q is indeed isomorphic to V2 defined as in theorem 1.4.2. In particular, it

is an sl2-module and the classes of simple objects are weight vectors. So this is a weak

sl2-categorification.

To prove that the additional data of X,T, a, q gives a proper sl2-categorification, we need

to verify the conditions.

• (1ET ) ◦ (T1E) ◦ (1ET ) = (T1E) ◦ (1ET ) ◦ (T1E) in End(E3)

Since E3 = 0, this is trivial.

• φ = (T + 1E2) ◦ (T − q1E2) = 0 in End(E2)

We only need to check M ∈ C−2, since E2 is zero on the other two components. If

M ∈ C−2, E2M = M ⊗K K[x]/(x2) ∈ C2 (seen as a vector space). So we get

φM (m⊗ (ax+ b)) = (T + Id)(T − Id)(m⊗ (ax+ b))

= (T + Id)(m⊗ (bx+ a)−m⊗ (ax+ b)

= m⊗ (ax+ b)−m⊗ (bx+ a) +m⊗ (bx+ a)−m⊗ (ax+ b) = 0

• φ = T ◦ (1EX) ◦ T = X1E − T = ψ in End(E2)

φM (m⊗ (ax+ b)) = (T ◦ 1EX)(m⊗ (ax+ b))

= T (−m⊗ ax) = −m⊗ a

ψM (m⊗ (ax+ b)) = (X1E − T )(m⊗ (ax+ b)) = m⊗ bx− (m⊗ (bx+ a)) = −m⊗ a

• X is locally nilpotent

If M ∈ C−2, then

X2
M : EM → EM → EM

m⊗ (ax+ b) 7→ −m⊗ bx 7→ m⊗ 0 = 0

If M ∈ C0, then

X2
M : EM → EM → EM

m⊗ (ax+ b) 7→ m⊗ bx 7→ m⊗ 0 = 0

So this is, indeed, a sl2-categorification.
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Remark.

Define everything as above, but this time choose C−2 = C2 = (K[x]/(x2))- mod and

C0 = K- mod. So now we have

(K[x]/(x2))- mod
Res // K- mod
Ind

oo
Ind // (K[x]/(x2))- mod
Res

oo

and this is a weak sl2-categorification of V2.

However, it cannot become an sl2-categorification, because, as we are about to see, E2 is

an indecomposable functor (and this would contradict lemma 3.2.4).

Suppose E2 = A ⊕ A′. Since E2(K) = K[x]/(x2), which is indecomposable, clearly we

have either A(K) = 0 or A′(K) = 0. Without loss of generality, suppose A(K) = 0. The

exactness of A implies that A(K[x]/(x2)) = 0, and this implies that A = 0 since the only

two indecomposable (K[x]/(x2))-modules are K and K[x]/(x2). So E2 is indecomposable.

Remark.

Even if En can be decomposed, it is not guaranteed that the weak sl2-categorification can

become an sl2-categorification. Choosing C−2 = C2 = K- mod and C0 = (K×K)- mod and

defining E and F as induction and restriction functors in the usual way, then we get that

K0(C) ⊗ Q ' V2 ⊕ V0 as sl2-modules. Here, we have E2 ' E ⊕ E, but still this can’t be

turned into an sl2-categorification. In fact, suppose there is X ∈ End(E), T ∈ End(E2)

with the required properties. We have End(E2) = EndK(K×K), so X1E = 1EX = a1E2

(recall Schur’s lemma). This gives an absurd because the morphism H2(q) → End(E2)

should induce one on the quotient H2(q)/(X1 = X2 = a) ' 0, but a1E2 6= 0 , so this can’t

become an sl2-categorification.

A general recipe

Given an abelian category C and two left and right adjoint functors Ê and F̂ together

with X ∈ End(Ê) and T ∈ End(Ê2) which satisfy the relations of an affine Hecke algebra

for some q, we obtain an sl2-categorification on C for each a ∈ K, given by the generalized

a-eigenspaces of X acting on Ê, F̂ , denoted by E = Ea, F = Fa. We only need to check

that E and F indeed do give an action of sl2 on the Grothendieck group, because the fact

that T restricts to endomorphisms of E and E2 with the desired properties is automatic.
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That is because of lemma 2.2.4. In fact, in H2(q)

T1(X2 − a)N − (X1 − a)NT1 =


(q − 1)X2

(
N−1∑
i=0

(X1 − a)i(X2 − a)N−1−i

)
if q 6= 1

N−1∑
i=0

(X1 − a)i(X2 − a)N−1−i if q = 1

so if we take an object M and consider EaM , we have that TEaM is still killed by (X−a)N

for some N , essentially because we know that for some n ((X − a)nEa)M = 0, and we

can use the identity above to write (X − a)NT as a linear combination of things that kill

EaM for a big enough N .

3.3 Minimal categorifications

In the following, we build a categorification of the finite dimensional simple sl2-module for

each n ∈ N. These categorifications are minimal in a sense we will specify later.

Definition 3.3.1. Fix q ∈ K×, a ∈ K with a 6= 0 if q 6= 1. Let n ≥ 0 and Bi = H̄i,n for

0 ≤ i ≤ n. We define

C(n)λ = B(λ+n)/2- mod

C(n) =
⊕
i

Bi- mod

where E =
∑

i<n Ind
Bi+1

Bi
and F =

∑
i>0 ResBiBi−1

. Recall that those are defined as

Ind
Bi+1

Bi
= Bi+1 ⊗Bi − and Res

Bi+1

Bi
= Bi+1 ⊗Bi+1 −, therefore they are clearly left and

right adjoint.

Note that, because of theorem 1.3.5 and theorem 2.4.1 we have that

K0(C(n)2i−n)⊗Q ' Q [Bi]

In fact still from theorem 2.4.1 we have that Bi+1, as a Bi-module, consists in a certain

number of copies of Bi. Now, since

EF (Bi) = E(Bi ⊗Bi Bi) = E(Bi) = Bi ⊗Bi−1 Bi ' (i+ n− 1)iBi

FE(Bi) = Bi+1 ⊗Bi Bi ' Bi+1 ' (i+ 1)(n− i)Bi
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we get that in K0(C(n))⊗Q

([E][F ]− [F ][E])([Bi]) = (2i− n)[Bi]

so ef − fe acts as λ on K0(C(n)λ) which, together with the other properties, means that

we have a weak sl2-categorification.

The image of Xi+1 in Bi+1 gives an endomorphism of Ind
Bi+1

Bi
by right multiplication on

Bi+1. We define X ∈ End(E) as the direct sum of all these endomorphisms. In the same

way, we define T ∈ End(E2) as the direct sum of the endomorphisms of Ind
Bi+2

Bi
e given

by the action of Ti+1 on Bi+2. Both are well-defined on the quotient because Ti+1 and

Xi+1 commute with every element of Hi. To see this is an sl2-categorification, we need to

verify the properties.

• (1ET ) ◦ (T1E) ◦ (1ET ) = (T1E) ◦ (1ET ) ◦ (T1E) in End(E3)

Let M ∈ Bi- mod. Note that E3(M) = M ⊗Bi Bi+3. Also note that T1E is right

multiplication by Ti+2, while 1ET is right multiplication by Ti+1 (this is easily seen

applying the definition of horizontal composition of natural transformations). So,

for any m⊗ k ∈ E3(M) we get

(1ET ) ◦ (T1E) ◦ (1ET ) : m⊗ k 7→ m⊗ (kTi+1Ti+2Ti+1)

(T1E) ◦ (1ET ) ◦ (T1E) : m⊗ k 7→ m⊗ (kTi+2Ti+1Ti+2)

which proves the property, since Ti+1Ti+2Ti+1 = Ti+2Ti+1Ti+2 in Hn.

• (T + 1E2) ◦ (T − q1E2) = 0 in End(E2)

Again, we just need to apply T . Given m⊗ k ∈ E2(M)

(T + 1E2) ◦ (T − q1E2)(m⊗ k) = (T + 1E2)(m⊗ (kTi+1)− qm⊗ k)

= m⊗ (kT 2
i+1)− qm⊗ (kTi+1) +m⊗ (kTi+1)− qm⊗ k

= m⊗ k(T 2
i+1 − qTi+1 + Ti+1 − q) = 0

erecall that Ind
Bi+2

Bi+1
◦ Ind

Bi+1

Bi
' Ind

Bi+2

Bi
in the obvious way
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• T ◦ (1EX) ◦ T =

qX1E if q 6= 1

X1E − T if q = 1
in End(E2)

First we investigate the action of the left side. For any m⊗ k ∈ E2(M)

(T ◦ (1EX) ◦ T )(m⊗ k) = (T ◦ (1EX))(m⊗ (kTi+1))

= T (m⊗ (kTi+1Xi+1)) = m⊗ (kTi+1Xi+1Ti+1)

If q 6= 1, we are done since m⊗ (kTi+1Xi+1Ti+1 = m⊗ (kqXi+2) = qX1E(m⊗ k).

If q = 1, then we just have to compute

(X1E − T )(m⊗ k) = m⊗ (kXi+2)−m⊗ (kTi+1) = m⊗ (kXi+2 − Ti+1)

We ask if

Xi+2 − Ti+1
?
= Ti+1Xi+1Ti+1

Xi+2
?
= (Ti+1Xi+1 + 1)Ti+1

Xi+2
?
= (Xi+2Ti+1)Ti+1 = Xi+2

and we are done, since the local nilpotency of X − a follows from the one of every

addend of the direct sum.

Note that the representation on the Grothendieck group is exactly Vn (the simple n + 1-

dimensional sl2-module). Also, we saw in section 2.1 that a (weak) sl2-categorification

defines an sl2-module structure on the Grothendieck group of the full subcategory of

projective objects, so in this case we have one on K0(C(n)- proj)⊗Q that still has dimension

n+ 1. The identity morphism of sl2-categorifications Id : C(n)→ C(n) gives us a nonzero

morphism

i : K0(C(n)- proj)⊗Q −→ K0(C(n))⊗Q

This has to be surjective (implied by Schur’s lemma, remembering the right representation

is irreducible), and since the dimensions are equal it is actually an isomorphism.

To see in what sense we call these sl2-categorifications minimal, we need the following

lemma
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Lemma 3.3.2. Let C a category with an sl2-categorification, and let S be a simple object

of C. We define n as h+(S) and i ≤ n. Then

a) E(n)S is simple

b) The socle and the head of E(i)S are isomorphic to a simple object S′ of C. Also,

there are isomorphisms of (C, Hi)-bimodules

socEiS ' hdEiS ' S′ ⊗Ki

c) The morphism γSi : Hi → End(EiS) factors through H̄i,n and induces an isomor-

phism H̄i,n
∼−→ End(EiS)

d) We have [E(i)S]−
(
n
i

)
[S′] ∈ V ≤d(S′)−1

Also, we have similar statements replacing E by F and h+(S) by h−(S).

Proof. We take the isomorphism classes of simple objects as a basis of the sl2-representation

on the Grothendieck group. Note that it satisfies the requirement that
⊕

b∈B Q≥0b is sta-

ble under the action of e±.

First, we prove (a) in the case FS = 0. Using lemma 1.4.4 (with the same notations),

we have that [S] ∈ L+. So, by the isomorphism defined in 1.4.4.(3), we have that

[E(n)S] = r[S′] for some simple object [S′], r ≥ 1. The fact that [F (n)E(n)S] = [S]

implies r = 1, so we are done.

Now we prove that (a) implies (b), (c), (d).

From (a) and 3.2.4 we get that EnS ' n!S′′ for some S′′ simple. This means that, as

(C, Hn)-bimodules,

EnS ' S′′ ⊗R

for some right Hn-module R ∈ Nn. A dimension count easily shows that R ' Kn.

Now, En−i socE(i)S ⊂ En−iE(i)S ' S′′⊗Knc
1
i implies that, since S′′⊗Knc

1
i has a simple

socle (see [CR08], lemma 3.6), En−i socE(i)S is an indecomposable (C, Hn−i)-bimodule.

Moreover, if S′ is a nonzero summand of socE(i)S, then En−iS′ 6= 0 because of theorem

3.1.8, which means that there is only one summand and, therefore, soc(E(i)S) is simple.

As before, socEiS ' S′ ⊗Ki so we proved (b) in the socle case.

Now we prove (c). Because of lemma 1.5.5, dim End(E(i)S) is at most the multiplicity

p of S′ as a composition factor of E(i)S. Remembering that E(n−i)S′ 6= 0, we get that
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dim End(E(i)S) is at most the number of composition factors of E(n−i)E(i)S '
(
n
i

)
S′′.

This implies that

dim End(EiS) ≤ (i!)2

(
n

i

)
= dimH̄i,n

Since ker(γSn ) is a proper ideal of Hn, then ker(γSn ) ⊂ Hnnn (since H̄n is simple).

In particular, we have ker(γSi ) ⊂ Hi ∩ (nnHn), which implies that the canonical map

Hi → H̄i,n factors through a surjective map Im(γSi ) → H̄i,n . So γSi is surjective and

therefore an isomorphism H̄i,n
∼−→ End(EiS), and (c) is proven.

Note that this also gives p =
(
n
i

)
. Moreover, if T is a composition factor of E(i)S, and

E(n−i)T 6= 0, it must be T ' S′. This proves (d) and the head case of (b), after noting

that theorem 3.1.8 implies, as with the socle, that hd(E(i)S) is not killed by E(n−i).

Finally, we prove (a) in the general case. Let T be a simple quotient of F (h−(S))S, and

consider the isomorphism

Hom(S,E(r)T ) ' Hom(F (r)S, T ) 6= 0

so S is isomorphic to some submodule of E(r)T . Since FT = 0, E(n)S ' mS′ for some

simple object S′, m ≥ 0, and we have

Hom(E(n)S, S′) ' Hom(S, F (n)S′)

Since ES′ = 0, from (b) (implied by (a) in its F version for all objects O with EO = 0)

we have that soc(F (n)S′) is simple, which (since morphisms preserve the socle and S is

simple), along with Schur’s lemma, implies that dim Hom(S, F (n)S′) ≤ 1, so m = 1 and

we are done.

Corollary 3.3.3. The sl2(Q)-module V ≤d is the sum of the simple submodules of V of

dimension ≤ d

Proof. For any S simple object of C, put r = h−(S). By (a), S′ = F (r)S is simple. This

implies that, by adjunction

S ' socE(r)S′

and we know from (d) that [E(r)S′]−
(
d(S)
r

)
[S] ∈ V ≤d(S)−1.

So by induction on r we deduce that {[ErS′]}S′ simple, FS=0, 0≤r≤h+(S′) generates V . Using

lemma 1.4.4 : (ii)⇒ (i), we have the thesis.
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We need one more lemma

Lemma 3.3.4. Let U be a simple object of C with FU = 0. let n = h+(U), i < n. Define

a map φ as

EiU ⊗Bi Bi+1

φ

--
η(EiU)⊗1

// FEi+1U ⊗Bi Bi+1
ψ

// FEi+1U

where ψ is given by the action map of Bi+1 on FEi+1U . Then φ is an isomorphism.

Proof. Because of the equivalence defined in 2.3.11, we can prove the map is an isomor-

phism after applying −⊗Bi+1 Bi+1c
1
i+1.

First we note that, since
⊕

0≤al≤n−l
xa11 . . . xann K ' P̄i,n

Bi+1c
1
i+1 '

n−i−1⊕
a=0

P̄i,nx
a
i+1c

1
i+1

Now, consider the composition

φ = g ◦ (f ⊗ 1) : E(i)U ⊗
n−i−1⊕
a=0

Kxa → FE(i+1)U

where we put

f : E(i)U
η(E(i)U)−−−−−−→ FEE(i)U

1F c
1
[Si\Si+1]

U

−−−−−−−−−→ FE(i+1)U

g : FE(i+1)U ⊗
n−i−1⊕
a=0

Kxa → FE(i+1)U

If we prove that φ is an isomorphism, we are done.

First, we note that [FE(i+1)U ] = (n− i)[E(i)U ] f. So it suffices to prove that φ is injective.

We restrict φ to a map between the socles of the objects (as objects of C). We define

φa : socE(i)U → FE(i+1)U

fSince E(j) = Ej

j!
, and we have that (ef − fe)([EjU ]) = (2j − n)[EjU ], then following the matrix

representation given in 1.4.2

[FE(i+1)U ] =
1

(i+ 1)!
fei+1[U ] =

1

(i+ 1)!
fe[EiU ] =

1

i+ 1
fe[E(i)U ] = (n− i)[E(i)U ]
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as the restriction to the socle of E(i)U ⊗Kxa for any 0 ≤ a ≤ n− i− 1.

We know from lemma 3.3.2 that soc(E(i)S) is simple, so what we actually need to prove

is that the maps φa are linearly independent. By adjunction, it is equivalent to prove the

linear independence of the maps

ψa : E soc(E(i)U)
xa1

soc(E(i)U)−−−−−−−−−→ E socE(i)U
c1
[Si\Si+1]−−−−−−→ E(i+1)U

Put S = soc(E(i+1)U) (in particular, S is simple). Recall that soc(Ei+1U) = S ⊗Ki+1 as

(C, Hi+1)-bimodules.

Consider the right (K[xi+1] ⊗ Hi)-module L = HomC(S, soc(Ei+1U)) and its submodule

L′ = HomC(S, soc(E soc(EiU))).

Since L is a simple right Hi+1-moduleg and Hi+1 = (Hi ⊗ K[xi+1])Hf
i+1, we get that

L = L′Hf
i+1. In particular, this implies that L′c1

i+1 = Lc1
i+1, hence

soc(E soc(EiU))c1
i+1 = socE(i+1)U

This implies that the second map of ψ is injective, because soc(E soc(EiU)) is simple (still

because of lemma 3.3.2).

So we have the thesis if we prove that the xa1soc(E(i)U) maps are linearly independent.

To do this, we show that the restriction of γ
soc(E(i)U)
1 : H1 → EndC(E soc(E(i)U)) to⊕n−i−1

a=0 KXa
1 is injective.

Let I = ker
(
γ

soc(E(i)U)
n−i : Hn−i → EndC(E

n−i soc(E(i)U))
)

. As before, I ⊂ Hn−inn−i, so

ker γ1 ⊂ H1 ∩Hn−inn−i, which implies that the (canonical) map

n−i−1⊕
a=0

KXa
1 → EndC(E

n−i soc(E(i)U))

is injective, which implies the thesis.

Finally, we can define the morphism that shows why we call the categorification C(n)

“minimal”.

gSince soc(Ei+1U) = S ⊗ Ki+1 and S is simple, any morphism is twisted by the action of Hi+1 (so
there is no stable non-trivial submodule of L)



3. sl2-categorifications Minimal categorifications 68

Definition 3.3.5. Given C with an sl2-categorification, we fix U ∈ Ob C simple such that

FU = 0. We put n = h+(U). Then the following commutative diagram

Bi+1- mod
Ei+1U⊗Bi+1

−
// C

Bi- mod

Bi+1⊗Bi−
OO

EiU⊗Bi−
// C

E

OO

along with this other commutative diagram (a consequence of lemma 3.3.4)

Bi+1- mod

Bi+1⊗Bi+1
−
��

Ei+1U⊗Bi+1
−

// C

F
��

Bi- mod
EiU⊗Bi−

// C

defines a morphism of sl2-categorifications RU : C(n)→ C, where for any M ∈ Bi- mod we

have

RU (M) = M ⊗Bi EiU

From lemma 3.3.4, we have ζ− : EiU ⊗Bi Bi+1
∼−→ FEi+1U . The commutativity of the re-

quired diagrams immediately follows by the definition of RU and the two diagrams above.

This morphism allows us to state the following

Theorem 3.3.6. Let In be the set of isomorphism classes of simple objects U ∈ Ob C such

that FU = 0 and h+(U) = n. The morphism of sl2-categorifications

∑
n,U∈In

RU :
⊕

n,U∈In

C(n) −→ C

induces an isomorphism

⊕
n,U∈In

Q⊗K0(C(n)- proj)
∼−→ Q⊗K0(C)

so, essentially, for any sl2-categorification we get a canonical decomposition of the sl2-

module V into simple summands that are the sl2-modules given by the minimal categorifi-

cations.
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Proof. Since the sl2-module K0(C) ⊗ Q is locally finite, any simple object (meaning any

generator of the Grothendieck group) in C is equal to EiO for some O simple such that

FO = 0. So we can decompose K0(C)⊗Q in many submodules, one for each In.

By definition of RU , the induced morphism sends every K0(C(n)- proj) ⊗ Q in the irre-

ducible submodule generated by U = RU (B0) in K0(C)⊗Q, which of course implies that

different pairs n,U are sent in different components.

Moreover, since RU (Bi) = Bi⊗BiEiU ' EiU , it follows that any of the restrictions to one

submodule is surjective (and therefore an isomorphism), which means that any generator

of K0(C)⊗Q is in the image of one (and only one) RU (C(n)). This implies the thesis.

3.4 An equivalence on the derived category

Given C a category with an sl2-categorification, we want to construct a complex of functors

(for any λ ∈ Z).

Θλ : Komb(C−λ)→ Komb(Cλ)

To motivate our construction, consider V =
⊕
Vr a finite-dimensional representation of

sl2. Then we have an action of the Lie group SL2 on V .

In particular, a lift of the non-trivial element in the Weyl group of SL2, s =

(
0 1

−1 0

)
,

acts on V , and gives an isomorphism of vector spaces Vr → V−r for any r. To generalize

this in a category setting, we will need that (putting e(n) = 1
n!e

n, and remembering that

Vr−2p is 0 for large p so the sum is finite)

s|Vr = f (r) − ef (r+1) + e(2)e(r+2) − . . .

Definition 3.4.1. We put

Θ−rλ =

E(sgn,λ+r)F (1,r)
∣∣
C−λ

if r ≥ 0, λ+ r ≥ 0

0 otherwise

In order to define d (the differential), we consider the map

f : Eλ+rF r = Eλ+r−1EFF r−1 1
Eλ+r−1ε1Fr−1−−−−−−−−−−−→ Eλ+r−1F r−1
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and note that, since

E(sgn,λ+r) = Eλ+rcsgn
[Sλ+r/S[2,λ+r]]

csgn
[2,λ+r] ⊆ E

(sgn,λ+r−1)E

and, in the same way, F (1,r) ⊆ FF (1,r−1), we can restrict f to get

d−r : E(sgn,λ+r)F (1,r) → E(sgn,λ+r−1)F (1,r−1)

and finally define the complex of functors

Θ•λ : · · · → (Θλ)−i
d−i−−→ (Θλ)−i+1 → . . .

We have to prove that Θ•λ is indeed a complex, so we have to show that d1−rdr = 0. This

map is the restriction of 1Eλ+r−2ε21F r−2 where we put

ε2 : EEFF
1Eε1F−−−−→ EF

ε−→ Id

Since E(sgn,λ+r)F (1,r) ⊆ Eλ+r−2E(sgn,2)F (1,2)F r−2, to prove the thesis it is enough to show

that

E2F 2 γn(csgn2 )(ξ◦γn)(c12)
−−−−−−−−−−−→ E2F 2 ε2−→ Id

with γn(csgn
2 ) acting on E2 and (ξ ◦ γn)(c1

2) acting on F 2 h. This composition, however,

because of what we saw back in chapter 1 (considering the diagram at 1.1), is the same as

doing

E2F 2 γn(csgn2 c12)1F2−−−−−−−−−→ E2F 2 ε2−→ Id

where now γn(csgn
2 c1

2) acts on E2. Remembering that csgn
2 c1

2 = 0, we are done. Finally, we

can define

Θ• =
⊕
λ

Θ•λ

Remark. Since for any sl2-representation we have that, for any integer λ, v ∈ V−λ, the

action of s is given by

s(v) =

h−(v)∑
r=max(0,−λ)

(−1)r

r!(λ+ r)!
eλ+rf r(v)

hrecall the definition of ξ in the previous chapter at 3.1
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we have that [Θλ] : K0(C−λ) → K0(Cλ) (basically [Θλ] : V−λ → Vλ) coincides with the

action of s.

This definition gives us an immediate equivalence

Lemma 3.4.2. Let R : C′ → C be a morphism of sl2-categorifications. Then there is an

isomorphism of complexes of functors Θ•R
∼−→ RΘ•

′

Proof. We have to prove that for any λ we have RΘ•λ ' RΘ•
′
λ as functors, and that this

commutes with the differential d. Since the (Θλ)r are defined as restrictions of subfunctors

of E and F , lemma 3.1.3 easily implies the isomorphisms and the commutativity, hence

the thesis.

Having defined this complex, we are interested to investigate its properties in the minimal

categorification case. We have this lemma whose proof is mostly technical (see [CR08]).

Lemma 3.4.3. For any n ≥ 0, C = C(n) the minimal categorification, λ ≥ 0 and l = n−λ
2 ,

the homology of the complex of functors Θ•λ is concentrated in degree −l and we have an

equivalence

H−lΘ•λ : C−λ → Cλ

We can now state the main theorem of this section. It will be very useful in the following

chapter.

Theorem 3.4.4.

The complex of functors Θ• induces a self-equivalence of Db(C), which by restriction become

equivalences Db(C−λ)
∼−→ Db(Cλ). Moreover, the induced map [Θ] = s.

Proof. Our goal is to prove that, for any λ, the induced map

Θ̄λ : Db(C−λ)→ Db(Cλ)

is an equivalence of categories. Since both E and F have right adjoints, there exists the

right adjoint complex Θ•∨λ (as in lemma 1.2.3). We name ε : Θ•λΘ•∨λ → Id the co-unit of

this adjunction, and Z its cone. Note that, therefore, Z is a complex of exact functors

C−λ → Cλ.
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As usual, we pick U ∈ C with FU = 0 and EiU ∈ C−λ, and put n = h+(U). We consider

the fully faithful functor

RU : Kb (C(n)- proj)→ Kb(C)

that is induced by the RU we defined in the previous section (that acts on the objects,

so doesn’t change homotopy relations), and note that it commutes with Θ•λ (therefore

commutes with Θ•∨λ and Z) by lemma 3.4.2. By lemma 3.4.3 we have Z(EiU) = 0, so by

lemma 3.1.6 we have that Z(M) = 0 in Db(C−λ) for all M in this derived category.

This, as we proved in 1.1.21, implies that ε is an isomorphism in Db(C−λ). So the induced

Θ̄∨λ is a right inverse of Θ̄λ. In a similar way, it can be shown it is also a left inverse, so

we have the thesis.

The fact that the action on the Grothendieck group is the same as the action of s is a

trivial consequence of the remark above regarding the action of the Θλ.

Remark. In [CR08] it is proven that there is a similar equivalence in the homotopy category

K(C−λ) ' K(Cλ).



Chapter 4

Block theory

Recall that if we consider a finite group and a field of characteristic zero, we have the well-

known Artin-Wedderburn theorem which gives us a decomposition of the group algebra

over the field as a direct product of matrix rings. This theorem does not hold a priori

in characteristic p prime, but there is a very useful theorem due to Maschke that tells us

when we can still apply the Artin-Wedderburn theorem

Theorem 4.0.1. Let G be a finite group and K a field of characteristic p . If p does not

divide the order of G (i.e. if the p-Sylow subgroup of G is trivial) then KG, the group

algebra of G, is semisimple.

While proving useful in many cases, this theorem leaves most cases open if G = Sn, es-

sentially due to the fact that |Sn| = n!. So in the case of G = Sn representation theory

over fields of prime characteristic is even more difficult than it is on a generic group G.

In this chapter, we see an application of the sl2-categorification results above (in par-

ticular of theorem 3.4.4) that contributes to the proof of an important theorem that

partially addresses this issue. This originally appeared in [CR08]. We need to introduce

some concepts in order to be able to understand it. Since our aim is to give a general

understanding of the theory to make the application understandable, most proofs will be

skipped.

Recall that, as in all this work, all modules are finitely generated.

73
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4.1 Idempotents and block decomposition

Definition 4.1.1. Let R a ring. A element e ∈ R is called idempotent if e2 = e 6= 0.

Two idempotents are orthogonal if their product is 0. An idempotent e is called primitive

if it is not equal to the sum of any two orthogonal idempotents. Also note that for any

set of pairwise orthogonal idempotents {e1, . . . , er}, their sum is an idempotent.

Note that, if e ∈ R is an idempotent, then 1 − e is another idempotent orthogonal to e.

We have the following theorems (see [Sch12] for the proofs).

Theorem 4.1.2. Let e ∈ R be an idempotent, and L = Re be the left ideal generated by

it. Then we have a correspondence between
All sets {e1, . . . , er} of

pairwise orthogonal idempotents

with e1 + · · ·+ er = e

 ∼−−−−−→


All decompositions

{L = L1 ⊕ · · · ⊕ Lr}
of L into nonzero left ideals Li


{e1, . . . , er} 7−→ L = Re1 ⊕ · · · ⊕Rer

If e is a central idempotent (meaning e ∈ Z(R), we have a stronger result

Theorem 4.1.3. Let e ∈ R be a central idempotent, and I = Re = eR be the two-

sided ideal generated by it. Then I is a subring of R with unit element e, and we have a

correspondence between
All sets {e1, . . . , er} of pairwise

orthogonal central idempotents

with e1 + · · ·+ er = e

 ∼−−→


All decompositions

{I = I1 ⊕ · · · ⊕ Ir}
of I into nonzero two-sided ideals Ii


{e1, . . . , er} 7−→ I = Re1 ⊕ · · · ⊕Rer

Theorem 4.1.4. For any e ∈ R idempotent the following facts are equivalent

i) The R-module Re is indecomposable

ii) e is primitive

iii) the right R-module eR is indecomposable

iv) the ring eRe contains no idempotent other than e
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Moreover, for a noetherian ring R (from now on, we assume R noetherian, since this is

true in the case we are going to examine) we can state the following

Proposition 4.1.5. Let R be a noetherian ring , then

i) 1 ∈ R can be written as a sum of pairwise orthogonal primitive idempotents

ii) R contains only finitely many central idempotents

iii) Any two different central idempotents primitive in Z(R) are orthogonal

iv) The sum of all central primitive (in Z(R)) idempotents is 1.

Having such a decomposition has important implications for R-modules. We can define

Definition 4.1.6. Let e ∈ R be a central idempotent which is primitive in Z(R). We say

that an R-module M belongs to the e-block of R if eM = M .

This implies that ex = x for any x ∈M a, and therefore that any submodule or quotient

of M belongs to the e-block as well. We have

Proposition 4.1.7. Let {e1, . . . , en} be the set of all central primitive idempotents in

Z(R). Then

M = e1M ⊕ · · · ⊕ enM

This is called the block decomposition of M .

Proof. Since eiM ⊆M is a submodule which belongs to the ei-block, and

M = 1 ·M = (e1 + · · ·+ en)M ⊆ e1M + · · ·+ enM

we have the sum.

To prove it is a direct sum, choose an element in eiM ∩
∑

j 6=i ejMj . This element can be

written as eix =
∑

j 6=i ejxj for some elements x, xj . Then we have

eix = eieix = ei
∑
j 6=i

ejxj =
∑
j 6=i

eiejx = 0

so the sum is direct and we are done.

aex = e · 1x = e(
∑
ei)x = e2x = x, where that sum is on all primitive central idempotents in Z(R)
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It follows that, if M is indecomposable, it lies in only one of the ei-blocks.

We are now going to apply this facts to the group algebra KG of a finite group G, where

K is an algebraically closed field of characteristic p. Later we will use that in the G = Sn

case, so it may be useful to think of that example from the beginning.

We define E = E(G) = {e1, . . . , er} as the set of all primitive central idempotents. Those

are pairwise orthogonal and their sum is 1. So far, we know that any K[G]-module de-

composes uniquely as

M = e1M ⊕ · · · ⊕ erM

where eiM is in the ei-block.

In case of charK = 0, Maschke’s theorem implies that every KG module is projective, and

this allows us to have a complete description of the representations. This fails in the case

of characteristic p, but we can introduce a useful weaker notion

Definition 4.1.8. Let H ⊆ G a subgroup. We denote by ResGH and IndGH the usual

functors between KG- mod and KH- mod. A KG- mod M is relatively H-projective if M

is isomorphic to a direct summand of IndGH(ResGH(M)).

Note that this is equivalent to the requirement that M is isomorphic to a direct summand

of IndGH(L) for some KH-module L.

Another equivalent definition is stating that a KG module M is relatively H-projective if

for any pair of KG-modules A,B and any pair of KG-module homomorphisms

M
α0

~~
γ

��
A

β // B

for which there exists a KH-module homomorphism α0 : M → A such that β ◦ α0 = γ,

there also exists a KG-module homomorphism α : M → A such that β ◦ α = γ.

Note that if we choose H = {1} we get that a module is relatively H-projective if and

only if it is projective. Therefore, this definition generalizes the notion of projectivity.

The fact that if charK is prime to the order of G then KG is semisimple as a ring (hence

all KG-modules are projective) also generalizes in the following way

Proposition 4.1.9. If [G : H] is invertible in K then any KG module is relatively KH-

projective.
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Having introduced this new notion, we want to use it to identify an important invariant

of an (indecomposable) KG-module which measures the relative projectivity of M .

Definition 4.1.10. Let M be a KG-module. We define

V(M) = {H ⊆ G subgroup |M is relatively H-projective}

And we denote by V0(M) ⊆ V(M) the set of subgroups which are minimal with respect

to inclusion. We call any element of V0(M) a vertex of M .

Note that this set is not empty, since G ∈ V(M). Also, it can be shown that both

V(M) and V0(M) are closed under conjugation. Basically, vertices of M are the smallest

subgroups that make M relatively projective: in some sense, they measure “how far” is

M from being projective. Note that projective modules have trivial vertex. The following

lemma is very important, so we prove it

Lemma 4.1.11. Let p = charK. Then for any KG-module M , all vertices are p-groups

(meaning groups where any element has order equal to some power of p).

Proof. Let H ∈ V0(M), and let J ⊂ H be a p-Sylow subgroup of H. We claim that M is

relatively J-projective, which would imply the thesis by minimality of H. For any A,B

KG-modules, and β, γ homomorphisms of KG-modules such that there is a KJ homomor-

phism α0 : M → A with β ◦α0 = γ (as in the diagram of the definition), we want to show

that there exists α : M → A homomorphism of KG-modules with the same property.

Since [H : J ] is invertible in K, it follows that ResGH(M) is relatively J-projective. There-

fore there exists a KH homomorphism α1 : M → A such that β◦α1 = γ. Since H ∈ V(M),

this implies the thesis.

We are interested in a process to compute the vertices of indecomposable modules, since

this would be a huge step ahead in classifying all modules of KG. This is difficult, and

is actually an open problem in the case of G = Sn (at the moment there isn’t even any

reasonable conjecture).

In order to better understand what is going on, we want to gain a better understanding

of the block decomposition of KG.
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We consider the group G×G, that acts on KG in the obvious way

(G×G)×KG −→ KG

((g, h), x) 7→ gxh−1

we can view KG as a K(G×G)-module, in which the two-sided ideals of KG coincide with

the K(G×G)-submodules of KG. Also, the block decomposition

KG =
⊕
e∈E

KGe

coincides with the decomposition into indecomposable submodules in K(G×G)- mod. So

for any e ∈ E we can consider the set V0(KGe) of vertices of the indecomposable module.

We have the following result

Proposition 4.1.12. The K(G×G)-module KG is relatively K(δ(G))-projective , where

δ is the diagonal group inclusion δ : G→ G×G, g 7→ (g, g).

Proof. This is trivial once we note that the map

G
∼−−−−→ (G×G)/δ(G)

x 7→ (x, 1)δ(G)

induces an isomorphism of K(G×G)-modules KG ∼−−−−→ IndG×Gδ(G) (K)

Corollary 4.1.13. For any e ∈ E, KGe has a vertex of the form δ(H) for some subgroup

H. Moreover, if K is another subgroup such that δ(K) is a vertex of KGe, then H and

K are conjugate in G. Essentially, there is one and only one element in V0(KGe) up to

conjugation. We call those conjugate groups the defect groups of the e-block.

Proof (Sketch). Since KGe is a direct summand of KG, in particular it is relatively

K(δ(G))-projective. For the second one, we have that (see [Sch12](4.2.5)) there exists

an element (g, h) ∈ G × G such that δ(K) = (g, h)δ(H)(g, h)−1, which implies the the-

sis.

Remember that, as we proved before, defect groups are p-subgroups of G. We have the

following important result
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Lemma 4.1.14. Let e ∈ E, D a defect group of the e-block. Then any KG-module M in

the e-block is relatively KD-projective.

Proof. To prove this lemma, we need that KGe as a K(δ(G))-module is relatively K(δ(D))-

projective. The proof of this fact can be found in [Sch12].

Denote by (KGe)ad the vector space KGe viewed as a KG-module via G
∼−→ δ(G). Essen-

tially, this means that the action of G is given by

G× (KGe)ad (−→ KGe)ad

(g, x) 7→ gxg−1

This module is relatively KD projective because of the previously mentioned fact. There-

fore, there exists a KD-module L such that (KGe)ad is isomorphic to a direct summand

of IndGD(L). Now, consider the following diagram

M
α // (KGe)ad ⊗K M

β //M

v � // e⊗ v

x⊗ v � // xv

Where both maps are (easily) KG-module homomorphisms. The composite map is the

identity map (recall ev = v), which implies that M is isomorphic to a direct summand of

the middle term. Putting the two things together, we get that M is isomorphic to a direct

summand of IndGD(L)⊗K M . Now, using the isomorphisms

IndGD(L)⊗K M ' (KG⊗KD L)⊗K M ' KG⊗KD (L⊗K M) ' IndGD(L⊗K M)

we get the thesis (since we found a KD module S such that M is isomorphic to a direct

summand of IndGD(S) )

Remark. This theorem implies that a defect group of an e-block contains a vertex of any

finitely generated indecomposable module in this block. It can be seen that the defect

group occurs among these vertices, and this implies that it is actually the largest of such

vertices. In other words, defect groups can be considered as an upper bound for the vertex
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of any indecomposable module in the block.

In particular, if we consider the trivial module K, since it is indecomposable it belongs to

a block Ke0. We call this the principal block of KG. Note that the defect groups of the

principal block are also p-Sylow subgroups of G.

We need a notion known as Brauer correspondance. This will let us understand better

the structure of KG-modules by investigating KH-modules with the same defect group

D for some subgroup H (usually the normalizer of a p-subgroup). We will only give the

statements of the main theorems, since further details can be found in [Sch12] or [Mar08].

Theorem 4.1.15 (Green correspondence). Let H ⊆ G be a subgroup. Let V ⊆ G be

a subgroup such that the normalizer NG(V ) ⊆ H There is a one-to-one correspondence

between isomorphism classes of KG-modules with vertex V and isomorphism classes of

KH-modules with vertex V .

Definition 4.1.16 (Brauer homomorphism). Let D be a p-subgroup of G and H a sub-

group ofG such thatNG(D) ⊆ H. Define the Brauer map as the K-algebra homomorphism

BrD : Z(KG) −→ Z(KCG(D))∑
g∈G

agg 7→
∑

g∈CG(D)

agg

Note that this map gives a one-to-one correspondence between the idempotents e such

that D is the defect group of KGe and the idempotents e such that D is the defect group

of KNG(D)e, so it defined a one-to-one correspondence between the respective blocks.

Also note that for any subgroup H ⊇ NG(D), since NH(D) = H ∩ NG(D) = NG(D), if

we take a KH-block we have a unique KNH(D)-block that is also a KNG(D)-block, which

determines a unique KG-block and therefore sets up a correspondence.

Theorem 4.1.17 (Brauer correspondence).

Let D be a p-subgroup of G and H a subgroup of G such that NG(D) ⊆ H. For any

block A of KG having D as defect group there is a unique block B of KH such that

BrD(A) = BrD(B). Moreover, this is a bijection between the sets of blocks of KG and the

ones of KH having D as defect group.

Additionally, the Brauer correspondant of the principal block of KG is the principal block

of KH.
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The last result (known in literature as Brauer’s Third Main Theorem) is very important,

because usually the principal block is the one with the most complex structure in the

group algebra (mainly because it has the largest defect group) and this result makes it

a lot easier to work with. Note that, in general, it is not easy to describe the Brauer

correspondant of a given block.

4.2 Equivalences

Let A and B two symmetric K-algebras b. We define three types of equivalences.

Definition 4.2.1. A and B are Morita equivalent if there exists an equivalence of cate-

gories between A- mod and B- mod.

A characterization of Morita equivalences tell us that if this equivalence exists, then there

exists an exact (A,B)-bimodule M such that the equivalence is given by M ⊗B − and its

inverse.

Any two isomorphic rings are Morita equivalent. Moreover, any ring R is Morita equivalent

to the ring of n×n matrices over it. Another example of a Morita equivalence is given by

proposition 2.3.11.

A Morita equivalence preserves many properties, in particular simplicity, semisimplicity,

left/right Noetherian, left/right Artinian. Obviously, it also preserves exact sequences

(and hence projectivity). However, note that the involved algebras can be very different:

for instance, a Morita equivalence does not preserve commutativity, being a domain and

being a local ring. There is a useful criteria we do not prove

Proposition 4.2.2. An element e in a ring is called a full idempotent if e2 = e and

ReR = R. A property P is Morita invariant if one of the following (equivalent) facts is

true

• Whenever a ring R satisfies P, then so does eRe for any full idempotent e, and so

does every matrix ring Mn(R) for any n ∈ N.

• For any ring R, e ∈ R full idempotent, R satisfies P if and only if eRe satisfies P.

bRecall that an algebra A is symmetric if there exists a K-linear map tA : A → K which is a trace
(tA(ab) = tA(ba)) and such that A → HomK(A,K), a → (b → t(ab)) is an isomorphism. Also, recall that
any group algebra KG is a symmetric algebra
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Definition 4.2.3. A and B are Rickard equivalent if there exists an equivalence of cate-

gories between Db(A- mod) and Db(B- mod).

As before, a characterization is that there exists a complex C of exact (A,B)-bimodules

such that the equivalence has the form C ⊗B −.

Note that if A and B are Morita equivalent, then they are Rickard equivalent. The converse

does not hold.

In [Rou00], Rouquier introduces an even weaker type of equivalence, and gives useful

characterizations of these three that highlight how they are related. Given an A-module

M , we denote by M∗ the Aopp-module HomK(M,K). We state his definitions (these are

equivalent to the ones given above)

Definition 4.2.4. Let M be an exact (A,B)-bimodule. We say that M induces a Morita

equivalence between A and B if we have isomorphisms

M ⊗B M∗ ' A as (A,A)-bimodules

M∗ ⊗AM ' B as (B,B)-bimodules

Definition 4.2.5. Let C be a complex of exact (A,B)-bimodules. We say that C induces

a Rickard equivalence between A and B if we have isomorphisms

C ⊗B C∗ ' A⊕ Z1 as (A,A)-bimodules

C∗ ⊗A C ' B ⊕ Z2 as (B,B)-bimodules

where A and B are viewed as complexes concentrated in degree 0, and Z1, Z2 are homotopy

equivalent to 0. In this case, we call C a split-endomorphism two-sided tilting complex.

Definition 4.2.6. Let C be a complex of exact (A,B)-bimodules. We say that C induces

a stable equivalence between A and B if we have isomorphisms

C ⊗B C∗ ' A⊕W1 as (A,A)-bimodules

C∗ ⊗A C ' B ⊕W2 as (B,B)-bimodules

where A and B are viewed as complexes concentrated in degree 0, and W1, W2 are homo-

topy equivalent to complexes of projective bimodules.

Since it is what we are going to need, we suggest to think of these examples in the case

where C is as well a complex with only one term in degree 0, so if we say that a bimodule



4. Block theory Equivalences 83

M induces a stable equivalence we mean it in this sense.

Now it’s clear that Rickard equivalence is stronger than stable equivalence. We want to

examine the opposite situation: let M be an exact (A,B)-bimodule that induces a stable

equivalence. We have that M induces a Morita equivalence if (and only if) M ⊗B S is

simple for any simple B-module S.

In fact, since B is a direct summand of M∗⊗AM , and M∗⊗AM ⊗B S is indecomposable

for any simple S, we get that M∗ ⊗AM ' B. Moreover, since M ⊗B M∗ ' A ⊕ Z, and

M ⊗B M∗ ⊗A Z = 0, we have Z = 0 as well.

To prove that a Morita equivalence induces a Rickard equivalence, we need to define a

complex C. This can be done by truncating a projective resolution of M , in this way (see

[Rou00] for the proof).

Proposition 4.2.7. Let M be an exact (A,B)-bimodule which induces a Morita equiv-

alence. Let C be a complex of exact (A,B)-bimodules with homology only in degree 0,

isomorphic to M and such that any term is 0 outside {0, . . . , r}, and any other term is

projective but the r-th. Then C induces a Rickard equivalence

When viewing this in the context of blocks of KG-modules, it turns out a Rickard equiva-

lence is not enough to describe the situation. We are now going to give the definition of a

splendid equivalence as originally given by Rickard [Ric96]. This is not enough to describe

all the equivalences we need, but understanding this definition from Rickard is essential

to comprehend what splendid equivalences are about, and why Rouquier later generalized

it as he did in [Rou00]. The said generalization is mostly technical, so we just remind the

interested reader to the cited papers for a more detailed approach.

Before we define splendid equivalences, recall the following definition

Definition 4.2.8. Let M be a KG-module. We say that M is a p-permutation module if

for any p-subgroup of G there is a K-basis of M stabilized by the action of that subgroup.

It is clear from the definitions that the direct sum of two p-permutation modules is still a

p-permutation module: any summand of a p-permutation module is still a p-permutation

module as well. This is less trivial, but it’s proved by Broué in [Bro85]. Note that many

functors between module categories of group algebras can be seen as

−⊗KGM : KG- mod→ KH- mod
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where M is p-permutation bimodule that is projective as a left KG-module and as a right

KH- module. Examples of this include the induction functor (when G is a subgroup of

H), the restriction functor (when H is a subgroup of G) and the projection onto a block

if G = H. So, if we require that the equivalence is given by a complex of p-permutation

modules, that is not an unreasonable request.

Definition 4.2.9 (Rickard). Let G and H be finite groups with a common p-Sylow sub-

group P , and let A and B be block algebras of G and H respectively. A bounded complex

X of finitely generated (A,B)-bimodules is said to be a splendid tilting complex c if X is

a split-endomorphism two-sided tilting complex and all its terms, considered as K(G×H)

modules, are direct summands of ∆(P )-projective permutation modules, where we denote

by ∆(P ) the diagonally embedded subgroup of G×H.

Some remarks:

• Rickard himself notes that this construction applies only to principal blocks (we

need the defect groups to be p-Sylow subgroups). Since there are many occurreces

of derived equivalences between blocks whose defect group is not a p-Sylow, this

definition has to be adapted in that case, mainly identifying defect groups instead of

p-Sylow subgroups and changing “projective” to “relatively projective”. Rouquier

did that in the appendix of [Rou00].

• When we say that G and H have a common p-Sylow subgroup, we mean that we have

an embedding of P intoG andH. The definition actually depends on this embedding,

and different choices can, a priori, change the splendidness of a given complex.

Actually, after we extend the definition, as long as there is no chosen isomorphism

between the defect groups of A and B we can call splendid any indecomposable

complex of p-permutation modules. However, if such an isomorphism φ is chosen,

we need to add the condition that the complex is made of elements that are relatively

projective with respect to {(x, φ(x))}x∈D ⊆ A×B .

• The additional requirement for the complex to be made of p-permutation modules

comes from the fact that the Brauer correspondant of a p-permutation module is

still a p-permutation module and this, while not directly related to the equivalence

cshort for
“SPLit-ENDomorphism two-sided tilting complex of summands of permutation modules Induced from
Diagonal subgroups”
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between two blocks, makes the notion behave a lot better when we want to alter the

data (for example if we consider a subgroup of P ).

Finally, we can define a splendid Rickard equivalence as a Rickard equivalence defined by

a complex C which is splendid.

4.3 An application of theorem 3.4.4

Let p be a prime number, K an algebraically closed field of characteristic p. We consider

the degenerate affine Hecke algebra Hn(1), and note that Hn(1)/(X1) ' KSn, with

Ti 7→ si , Xi 7→ Li = (1, i) + (2, i) + · · ·+ (i− 1, i) d

A fundamental result is that the eigenvalues of Li acting on a KSn-module lie in the prime

subfield Z/(p) ⊂ K. So, given a ∈ Z/(p), M a KSn-module, we denote by Fa,n(M) the

generalized a-eigenspace of Xn. Note that this is a KSn−1-module.

We have decompositions

ResKSnKSn−1
=
⊕
a∈K

Fa,n , IndKSn
KSn−1

=
⊕
a∈K

Ea,n

where Ea,n is left and right adjoint to Fa,n. We define

Ea =
⊕
n≥1

Ea,n , Fa =
⊕
n≥1

Fa,n

which give the following (classic) result (see, for example, [Gro99] )

Theorem 4.3.1. The functors Ea and Fa for a ∈ Z/(p) give an action of the affine

Lie algebra ŝlp on
⊕

n≥0K0(KSn- mod). The decomposition of K0(KSn- mod) in blocks

coincides with its decomposition in weight spaces. Moreover, two blocks of symmetric

groups have the same weight if and only if they are in the same orbit under the adjoint

action of the affine Weyl group.

In particular, for any a ∈ Z/(p) we have a weak sl2-categorification on C =
⊕

n≥0 KSn- mod

given by Ea, Fa.

dthese are usually called the Jucys-Murphy elements. Among the many properties of these elements,
we mention that Ln commutes with all elements of KSn−1.
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If we denote by X the endomorphism of Ea given by right multiplication by Ln on each

Ea,n, and denote by T the endomorphism given by right multiplication by sn−1 on each

Ea,nEa,n−1, it can be shown that this becomes an sl2-categorification.

Theorem 4.3.2. Let A and B be two blocks of symmetric groups over K with isomorphic

defect groups. Then, A and B are splendidly Rickard equivalent.

Proof (Sketch). A known fact is that two blocks can have isomorphic defect groups if and

only if they have equal weights (see [CR08], [DK]). So the theorem above implies that

there is a sequence of blocks A0 = A,A1, . . . , Ar = B such that Aj = σaj (Aj−1) for some

simple reflection σaj of the affine Weyl group.

Theorem 3.4.4 implies that the complex of functors Θ associated with aj (meaning the com-

plex Θ that categorifies the action of the simple reflection σaj ) induces a self-equivalence of

Kb(C), that restricts to a splendid Rickard equivalence between Aj and Aj+1. Composing

these equivalences, we get a splendid Rickard equivalence between A and B and we are

done.

We have an analogue result if we consider group algebras over p-adic integers (denoted by

Zp = lim
←

Z/(pk) from now on), or, more in general, over complete discrete valuation rings

of characteristic zero with residue field of characteristic p.

Theorem 4.3.3. Let A and B be two blocks of symmetric groups over Zp with isomorphic

defect groups. Then, A and B are splendidly Rickard equivalent.

Proof (Sketch). First, we note that we can redo the same as before to construct Ẽa and F̃a,

getting adjoint functors with the additional property that Ẽa⊗ZpK ' Ea, F̃a⊗ZpK ' Fa.
This also gives an sl2-categorification. In the same way, we can build a complex Θ̃ of

functors on C̃ =
⊕

ZpSn- mod . This is still a splendid Rickard equivalence of Db(C̃)
because of theorem 5.2 in [Ric96]e

This theorem, along with results by Chuang, Rouquier, Rickard and Marcus, can be used

to prove Broué’s abelian defect group conjecture for blocks of symmetric groups. This is

e“Let R be a local ring, K its residue field. Let KA and KB be algebra summands of finite group
algebras KG and KH respectively, and let X be a splendid tilting complex for KA and KB. Then there is
a splendid tilting complex X for RA and RB with X ⊗R K ' X, unique up to isomorphism”



4. Block theory An application of theorem 3.4.4 87

far beyond the scope of this work, but we state the conjecture anyway. A special section of

the bibliography mentions some works needed to understand the proof of this conjecture

given by Chuang and Rouquier in [CR08].

Theorem 4.3.4 (Broué’s Abelian Defect Group Conjecture).

Let A be a block of a symmetric group G over Zp, D a defect group and B the Brauer

correspondent block of NG(D). If D is abelian, then A and B are splendidly Rickard

equivalent.

Remark. Note that if such an equivalence is found, then for each subgroup Q of D the prin-

cipal blocks of KCG(Q) and KCH(Q) also have splendidly equivalent derived categories.

We expect to find some kind of compatibility between those equivalences if we vary Q.

If we require that the equivalence is given by a complex of p-permutation modules (we

already pointed out this is not an unreasonable request), then the fact that the Brauer

construction behaves so nicely on these modules makes it easy to induce a tilting complex

between KCG(Q) and KCH(Q), that can be proved to give the splendid equivalence.
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